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i

Few-Shot References

Multi- Speaker
Computer talks. —[ TTS System }— ww WW

Text Synthesized Speech

Challenge
e Extract speaker and style information from limited references
* Enable the TTS system to generalize to different speakers/styles
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“Deep voice 3: Scaling text-to-speech with convolutional sequence learning”, Ping, et. al, ICLR’18
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“Deep voice 3: Scaling text-to-speech with convolutional sequence learning”, Ping, et. al, ICLR’18
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Background & Motivation

General Framework of Multi-Speaker TTS
Pretrained Speaker Representation

WMMW Pretraining Task

Reference
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“Transfer learning from speaker verification to multi-speaker text-to-speech synthesis”, Jia, et. al, NeurlPS’18
“Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings”, Cooper, et. al, ICASSP’20
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Motivation: Different Pretraining Tasks

* D-vector
 X-vector

VS

Discriminative Pretraining Tasks Generative Pretraining Tasks?
e.g. speaker classification
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Speaker Representation Pretraining
Discriminative Tasks: D-vec & X-vec

WMWM —— Neural Network ———— .S;.)eal.<er
Classification Loss
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“Generalized end-to-end loss for speaker verification”, Wan, et. al, ICASSP’18
“X-vectors: Robust dnn embeddings for speaker recognition”, Snyder, et. al, ICASSP’18



Speaker Representation Pretraining
Discriminative Tasks: D-vec & X-vec
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“Generalized end-to-end loss for speaker verification”, Wan, et. al, ICASSP’18
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“One-Shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization”,
Chou, et. al, InterSpeech’19
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Speaker Representation Pretraining
Generative Tasks: AdalN-VC (One-Shot)

WMWW — Speaker Encoder > WMWMM

Real Speech Speaker Representation Real Speech

Reconstruction
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Real Speech

“One-Shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization”,
Chou, et. al, InterSpeech’19
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““Style tokens: Unsupervised style modeling, control and transfer in end-to-end speech synthesis”, Wang, et. al, ICML 18
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Dataset

* Training: 96 hours of Mandarin speech by 230 speakers with
transcriptions
e AlShell-3
* M2VoC dataset

* 6 few-shot target speakers
* Track 1: 3 speakers with 100 recordings
* Track 2: 3 speakers with 5 recordings

* The few shot speakers are also used to train the speaker
representation models and the TTS models



TTS Model Setup

* Tacotron 2 & FastSpeech 2
» Speaker representations are added to encoder outputs

 WaveNet vocoder
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Metrics ‘ [ Speaker Verification Accuracy ]
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Automatic Speaker Similarity Evaluation

Metrics ‘ [ Speaker Verification Accuracy ]

Scale: 0 ~ 1, the larger the better

Speaker Representation Results Audio samples (Track 2, 5 references)
Model Pretrained Learnable = SV Accuracy
d-vec x-vec VC embed GST Track 1 Track 2 Target Speaker
Vv 772 367 d-vec
v 785 377
(a) Tacotron 2 v .942 A27 X-vecC
v 630  .703
voo.102  .050 VC
v 977 323
& 973 623 embed
(b) FastSpeech2 v 980 .837
v 988 490 GST

v 178 340



Automatic Speaker Similarity Evaluation

Speaker Verification Accuracy ]

Metrics ‘ [

(a) d-vector

Scale: 0 ~ 1, the larger the better
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Automatic Speaker Similarity Evaluation

Metrics ‘ [ Speaker Verification Accuracy ]
Scale: 0 ~ 1, the larger the better More Continuous
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Automatic Speaker Similarity Evaluation
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Scale: 0 ~ 1, the larger the better

Speaker Representation Results

Model Pretrained Learnable = SV Accuracy
d-vec x-vec VC embed GST Track 1 Track 2

(b) FastSpeech2 v 980 .837
v v 978 747
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(c) FastSpeech2 v 7 982 783
v v v 988 .897

v v v v v 990 887

* The colored row is the model used for the final submission to the ICASSP
2021 M2VoC challenge. Due to the time limitation, we did not submit our

best model.

Multiple speaker representations

Track 1 (100 references):
No obvious difference




Automatic Speaker Similarity Evaluation

Metrics ‘ [ Speaker Verification Accuracy ]

Scale: 0 ~ 1, the larger the better

Speaker Representation
Learnable

Model Pretrained

Results

SV Accuracy

d-vec x-vec VC embed GST Track 1 Track 2

(b) FastSpeech2 v 980 837
v v 978 747

v 992 .860

v v 983 937

(c) FastSpeech2 v 7 982 783
v v v 988 .897

v v v v 990 887

* The colored row is the model used for the final submission to the ICASSP
2021 M2VoC challenge. Due to the time limitation, we did not submit our

best model.

Multiple speaker representations

Track 1 (100 references):
No obvious difference

Track 2 (5 references):
Multiple Representations >
Single Representation
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Subjective Evaluation (FastSpeech 2, Track 2)

Metrics ‘ [ Quality MOS ] [ Speaker Similarity MOS ]

Scale: 1 ~ 5, the larger the better

Speaker Representation
X-Vec VC Embed VC+Embed

MOSquality 3.47 £.13 3.61 ==.13 3.65 £ .13 3.55 £ .12
MOSsimilarity | 3.25 + .13 3.19 + .14 327+ .13 3.38 4+ .14

Model

Audio samples (Track 2, 5 references)

Target Speaker VC VC+Embed



Official Evaluation Results

No External Data

Track 2A
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Fig. 3: The official subjective evaluation results of Track 2.
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Conclusion

* Pretrained speaker representation + learnable speaker
representations > single representation

* Generative pretraining > discriminative pretraining



Resources

» Audio Samples: https://ming024.github.io/M2VoC/
* Code: https://github.com/ming024/FastSpeech2/tree/M2VoC
e Paper: https://arxiv.org/abs/2103.04088
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