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Domain Generalization Problem

Bearings [2] (vibration sensor signals)
« 10 classes: 9 faulty classes, 1 healthy class

8 operating conditions (domains): 4 loading L
torques x 2 bearing locations

HHAR [3] (device motion sensor signals)
* 6 human activity classes
¢ 9 users (domains)

Problem of Deep Learning

Deep learning has widely acclaimed performance in various applications. Yet, its success is typically reliant on the
assumption that train and test data are sampled from the same distribution. Many real-world environments are highly
dynamic, making test samples to be out of distribution.
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Challenges in Domain Generalization

« Source domain labels may be unavailable in practice for training, and dataset labels cannot replace domain labels
when samples of a dataset are drawn from a mixture of domains.

 DFDG hyperparameters: a = 0.1, m=50, gMax = 70.

« Methods for comparison: TrainAll, MMLD [6], RSC [5].
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2.Sample g~Unif (0,gMax)

3.0bservations with saliency score below the
qt" percentile are shuffled

4.In each batch, augment m% of samples
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