FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and Fusing Fine-Grained Voice Fragments With Attention

Yist Y. Lin*, Chung-Ming Chien*, Jheng-Hao Lin, Hung-yi Lee, Lin-shan Lee

IEEE ICASSP 2021

Highlights

- Any-to-any voice conversion
 - One-shot (zero-shot)
 - Parallel-data-free
 - SOTA performance

FragmentVC \Rightarrow attention + end-to-end

Voice Conversion

З

Prior Art 1: Any-to-Any Voice Conversion

Prior Art 2: Exemplar-based Voice Conversion

Heavily handcrafted \Rightarrow DNN (attention) + end-to-end

Model Architecture

Test-time setting

Experimental Setup

- Training
 - VCTK corpus (109 speakers)
- Testing
 - seen speaker (VCTK)
 - unseen speakers (CMU)

Automatic Speaker Similarity Evaluation

- Speaker similarity: outputs \Leftrightarrow target speakers' utterances
- Off-the-shelf speaker verification system

- The percentage of outputs passing the system (the higher the better)

	Proposed	Proposed w/o finetune	AdaIN-VC [1]	AUTOVC [2]				
seen-to-seen	94.8	94.7	97.8	39.3				
unseen-to-unseen	92.5	99.8	87.1	19.0				
Duch a calala wayfawa hattau l								

[1] Chou et al., One-Shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization [2] Qian et al., AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

Proposed models perform beller :

Subjective Evaluation

- Mean Opinion Score (MOS) of synthetic utterances
 - Speaker similarity
 - Naturalness

	Proposed	Proposed w/o finetune	AdaIN-VC	AUTOVC	Auth.	
Speaker similarity	3.32 ± 0.15	3.81 ± 0.15	2.75 ± 0.15	2.12 ± 0.14	_	
Naturalness	3.26 ± 0.12	2.73 ± 0.11	2.52 ± 0.12	2.31 ± 0.12	4.09 ± 0.12	
	Trade similarity for Proposed models perform better ! naturalness					

Attention Analysis

- Same sentence, different speakers
- Alignment of phonetically similar fragments

Source "Please call Stella."

Target "Please call Stella."

Converted "Please call Stella.

Attention Analysis

• Different sentence, different speakers

Source "Please call Stella."

"The Norsemen considered the rainbow as a bridge over which the gods passed from earth to their home in the sky."

Conclusion

- A SOTA approach to any-to-any voice conversion
- Utilize attention mechanism to end-to-end
 - Extract target fragments phonetically similar to source fragments
 - Fuse the extracted fragments to achieve voice conversion
- Source code & model: <u>https://github.com/yistLin/FragmentVC</u>