

A\*I2R

Dropolt

## POLA: ONLINE TIME SERIES PREDICTION BY ADAPTIVE LEARNING RATES

Wenyu Zhang

Machine Intellection Department

Institute for Infocomm Research

IEEE ICASSP 2021, 6-11 June



#### Outline

| Motivation              | Page 3  |
|-------------------------|---------|
| Problem Setup           | Page 6  |
| Proposed Method: POLA   | Page 8  |
| Experiments and Results | Page 12 |



#### **Motivation**

Streaming setting:

- Data is collected by continuously monitoring a system
- Data in dynamic environments is subject to concept drift
  - Joint distribution of predictor and response variables changes across time
- Models need to be updated to avoid degrading performance



#### **Motivation**



- Temporal correlations means that observations cannot assumed to be independently and identically distributed (i.i.d.)
- Focus on deep recurrent neural networks



#### **Motivation**

#### Online time series prediction

- Temporal correlations means that observations cannot assumed to be independently and identically distributed (i.i.d.)
- Focus on deep recurrent neural networks

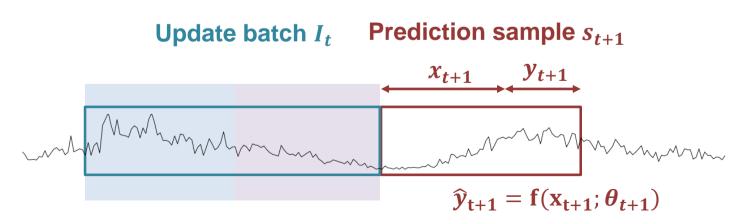
#### Goal:

- Adapt quickly in dynamic environments without overfitting to current system state or noisy samples, by
- Automatically scheduling the online learning rate of stochastic gradient descent (SGD) algorithm



## **Problem Setup**

- For process  $\{Z_t\}$ , observation  $z_t \in \mathbb{R}^d$
- At time t, use a historical sequence  $x_t$  of length m, to predict an output forecast sequence  $y_t$  for the next n time steps
  - $x_t = [z_{t-m+1}, \dots, z_t]$
  - $y_t = [z_{t+1}, \dots, z_{t+n}]$
  - Denote prediction sample  $s_t = (x_t, y_t)$
- Online batch size *b*



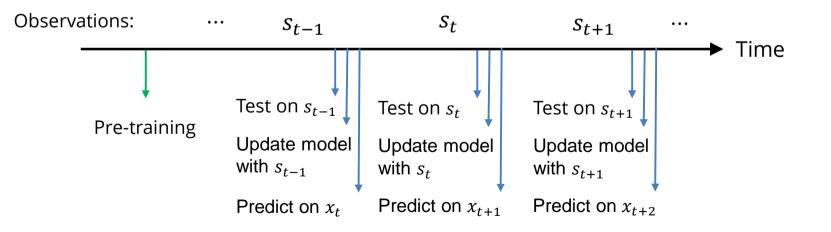
**CREATING GROWTH, ENHANCING LIVES** 



### **Problem Setup**

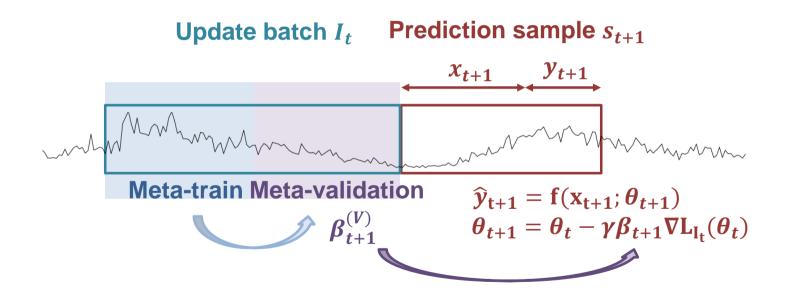
Example interleaved-test-then-train scheme:

- Forecast length n = 1
- Online batch size b = 1



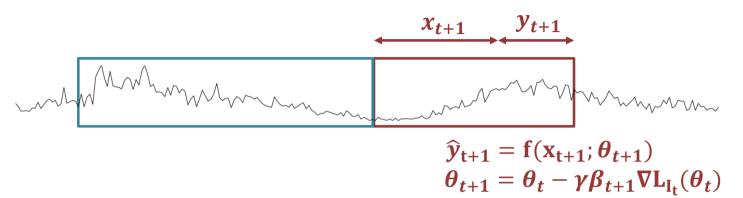


### Proposed Method: Predicting Online by Learning rate Adaptation (POLA)





#### **Proposed Method: POLA**



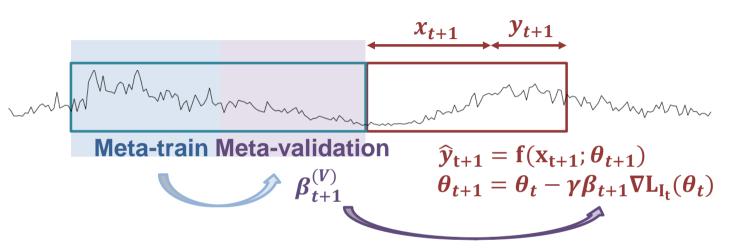
Adaptive learning rate

- Maximum learning rate  $\gamma$
- Learning rate factor  $\beta_{t+1} \in [0,1]$
- Learning rate is small if the current update batch is not useful in helping the model adapt



# 

#### **Proposed Method: POLA**

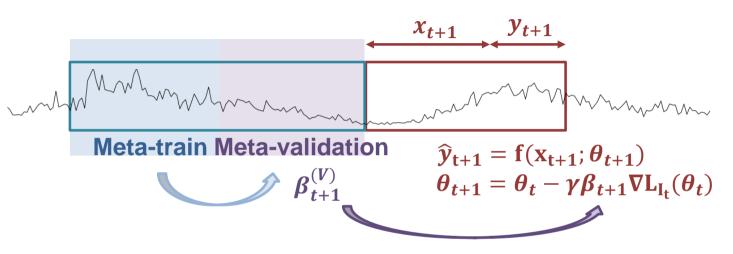


Meta-learn the learning rate factor

- Split the update batch to a meta-training and meta-validation set
- Meta-learning sets are a proxy to the training and testing procedure
- Optimize the learning rate factor on the meta-learning sets



### **Proposed Method: POLA**



Implementation

(1) POLA-FS: Search for  $\beta_{t+1}^{(V)}$  in a finite set of candidates

(2) POLA-GD: Optimizes for  $\beta_{t+1}^{(V)}$  by gradient descent with learning rate  $\eta$  for k steps



#### **Experiments: Datasets**

Sunspot

- Monthly sunspot number from January 1749 to July 2020
- Historical data length m = 48
- Forecast length n = 5

#### Household Power Consumption

- Daily power consumption (global active power, global intensity, voltage) from December 16, 2006 to November 26, 2010
- Historical data length m = 28
- Forecast length n = 3



## **Experiments: Competing Methods**

Holt-Winters: exponential smoothing OR-ELM: online recurrent extreme learning machine

#### Recurrent neural network

- Pre-trained: no model update in online phase
- FTL: Follow-The-Leader retraining every *b* steps
- MAML: meta-learning pre-training
- Online-SGD: constant learning rate
- Online-RMSprop: element-wise adaptive learning rate
- WG: adapts SGD learning rate based on whether current sample is outlier or change point



## **Experiments: Online Prediction Performance**

• RNN and time series models

| METHOD         | NORMALIZED RMSE               |                               |  |
|----------------|-------------------------------|-------------------------------|--|
|                | Sunspot                       | Power                         |  |
| Holt-Winters   | 0.991                         | NA                            |  |
| OR-ELM         | 0.822                         | NA                            |  |
| Pre-trained    | 0.572                         | 0.816                         |  |
| FTL*           | 0.572                         | 0.820                         |  |
| MAML           | 1.295                         | 1.023                         |  |
| Online-SGD     | 0.552                         | 0.775                         |  |
| Online-RMSprop | 0.536                         | 0.809                         |  |
| WG             | 0.552                         | NA                            |  |
| POLA-FS        | $\underline{0.532} \pm 0.002$ | $\textbf{0.769} \pm 0.003$    |  |
| POLA-GD        | $\textbf{0.500} \pm 0.002$    | $\underline{0.773} \pm 0.005$ |  |



## **Experiments: Online Prediction Performance**

• LSTM and GRU

| MODEL | METHOD                             | NORMALIZED RMSE                                                            |                                                       |
|-------|------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|
|       |                                    | Sunspot                                                                    | Power                                                 |
| LSTM  | Online-SGD<br>Online-RMSprop<br>WG | 0.532<br><u>0.517</u><br>0.532                                             | 0.821<br><b>0.794</b><br>NA                           |
|       | POLA-FS<br>POLA-GD                 | $\begin{array}{c} 0.534 \pm 0.009 \\ \textbf{0.512} \pm 0.006 \end{array}$ | $\frac{0.802}{0.806} \pm 0.005 \\ \pm 0.071$          |
| GRU   | Online-SGD<br>Online-RMSprop<br>WG | 0.526<br>0.521<br>0.526                                                    | <b>0.768</b><br>0.786<br>NA                           |
|       | POLA-FS<br>POLA-GD                 | $\frac{0.508}{\textbf{0.489}} \pm 0.002 \\ \pm 0.002$                      | $\frac{0.769}{\textbf{0.768}} \pm 0.003 \\ \pm 0.003$ |



## **Experiments: Sensitivity Analysis**

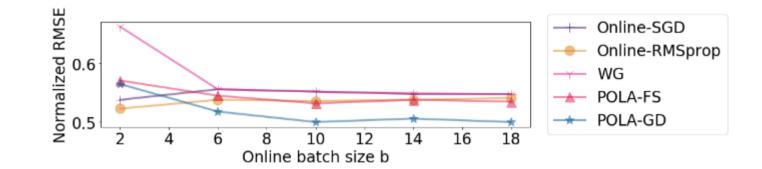
• POLA-GD gradient descent hyperparameters

| # STEPS | LEARNING      | NORMALIZED RMSE |       |
|---------|---------------|-----------------|-------|
| (k)     | RATE $(\eta)$ | Sunspot         | Power |
| 1       | 0.1           | 0.515           | 0.773 |
| 2       | 0.1           | 0.504           | 0.772 |
| 3       | 0.1           | 0.500           | 0.773 |
| 1       | 0.01          | 0.525           | 0.777 |
| 2       | 0.01          | 0.520           | 0.776 |
| 3       | 0.01          | 0.516           | 0.775 |



#### **Experiments: Sensitivity Analysis**

• Online batch size





#### Summary

#### Proposed POLA method

- Automatically schedules SGD online learning rate
- Adapts online learning rate by assimilating training and testing procedure with meta-learning

#### ☑ Model-agnostic

Attains overall comparable or better predictive performance over competing methods across multiple datasets and network architectures



#### **Selected References**

T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer and K. Funaya, "Robust Online Time Series Prediction with Recurrent Neural Networks," 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

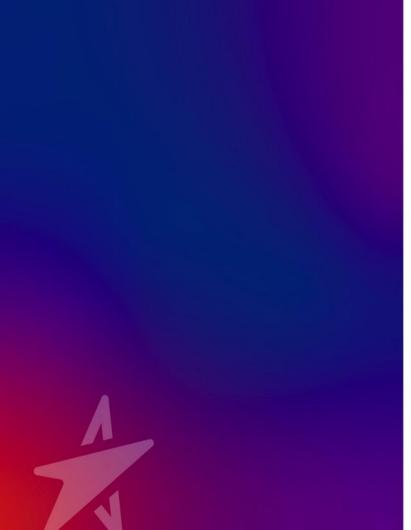
J. Park and J. Kim, "Online Recurrent Extreme Learning Machine and Its Application to Time-Series Prediction," 2017 International Joint Conference on Neural Networks (IJCNN).

Anusha Nagabandi, I. Clavera, Simin Liu, Ronald S. Fearing, P. Abbeel, S. Levine and Chelsea Finn, "Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning," *2019 arXiv*.

Geoffrey Hinton, Nitish Srivastava and Kevin Swersky, "Neural Network for Machine Learning."









## **THANK YOU**

www.a-star.edu.sg