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Motivation

Streaming setting:

• Data is collected by continuously monitoring a system

• Data in dynamic environments is subject to concept drift

• Joint distribution of predictor and response variables changes across time

• Models need to be updated to avoid degrading performance
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Motivation

Online time series prediction

• Temporal correlations means that observations cannot assumed to be 
independently and identically distributed (i.i.d.)

• Focus on deep recurrent neural networks
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Motivation

Online time series prediction

• Temporal correlations means that observations cannot assumed to be 
independently and identically distributed (i.i.d.)

• Focus on deep recurrent neural networks

Goal:

• Adapt quickly in dynamic environments without overfitting to current system 
state or noisy samples, by

• Automatically scheduling the online learning rate of stochastic gradient 
descent (SGD) algorithm
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Problem Setup

• For process {𝑍𝑡}, observation 𝑧𝑡 ∈ ℝ𝑑

• At time 𝑡, use a historical sequence 𝑥𝑡 of length 𝑚, to predict an output 
forecast sequence 𝑦𝑡 for the next 𝑛 time steps

• 𝑥𝑡 = 𝑧𝑡−𝑚+1, … , 𝑧𝑡
• 𝑦𝑡 = [𝑧𝑡+1, … , 𝑧𝑡+𝑛]

• Denote prediction sample 𝑠𝑡 = (𝑥𝑡 , 𝑦𝑡)

• Online batch size 𝑏

Prediction sample 𝒔𝒕+𝟏

𝒙𝒕+𝟏 𝒚𝒕+𝟏

Update batch 𝑰𝒕

ෝ𝒚𝐭+𝟏 = 𝐟(𝐱𝐭+𝟏; 𝜽𝒕+𝟏)
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Problem Setup

Example interleaved-test-then-train scheme:

• Forecast length 𝑛 = 1

• Online batch size 𝑏 = 1

Pre-training

𝑠𝑡−1 𝑠𝑡+1𝑠𝑡⋯ ⋯
Time 

Test on 𝑠𝑡−1

Update model 

with 𝑠𝑡−1

Observations:

Test on 𝑠𝑡

Update model 

with 𝑠𝑡

Test on 𝑠𝑡+1

Update model 

with 𝑠𝑡+1

Predict on 𝑥𝑡 Predict on 𝑥𝑡+1 Predict on 𝑥𝑡+2
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Proposed Method:
Predicting Online by Learning rate Adaptation (POLA)
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Prediction sample 𝒔𝒕+𝟏

𝒙𝒕+𝟏 𝒚𝒕+𝟏

Update batch 𝑰𝒕

Meta-train Meta-validation

𝜽𝒕+𝟏 = 𝜽𝒕 − 𝜸𝜷𝒕+𝟏𝛁𝐋𝐈𝐭(𝜽𝒕)𝜷𝒕+𝟏
(𝑽)

ෝ𝒚𝐭+𝟏 = 𝐟(𝐱𝐭+𝟏; 𝜽𝒕+𝟏)
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Proposed Method: POLA
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𝒙𝒕+𝟏 𝒚𝒕+𝟏

𝜽𝒕+𝟏 = 𝜽𝒕 − 𝜸𝜷𝒕+𝟏𝛁𝐋𝐈𝐭(𝜽𝒕)
ෝ𝒚𝐭+𝟏 = 𝐟(𝐱𝐭+𝟏; 𝜽𝒕+𝟏)

Adaptive learning rate

• Maximum learning rate 𝛾

• Learning rate factor 𝛽𝑡+1 ∈ 0,1

• Learning rate is small if the current update batch is not useful in helping the 
model adapt
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Proposed Method: POLA
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Meta-learn the learning rate factor

• Split the update batch to a meta-training and meta-validation set

• Meta-learning sets are a proxy to the training and testing procedure

• Optimize the learning rate factor on the meta-learning sets

𝒙𝒕+𝟏 𝒚𝒕+𝟏

Meta-train Meta-validation

𝜽𝒕+𝟏 = 𝜽𝒕 − 𝜸𝜷𝒕+𝟏𝛁𝐋𝐈𝐭(𝜽𝒕)𝜷𝒕+𝟏
(𝑽)

ෝ𝒚𝐭+𝟏 = 𝐟(𝐱𝐭+𝟏; 𝜽𝒕+𝟏)
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Proposed Method: POLA
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Implementation

(1) POLA-FS: Search for 𝛽𝑡+1
(𝑉)

in a finite set of candidates

(2) POLA-GD: Optimizes for 𝛽𝑡+1
(𝑉)

by gradient descent with learning rate 𝜂 for 

𝑘 steps

𝒙𝒕+𝟏 𝒚𝒕+𝟏

Meta-train Meta-validation

𝜽𝒕+𝟏 = 𝜽𝒕 − 𝜸𝜷𝒕+𝟏𝛁𝐋𝐈𝐭(𝜽𝒕)𝜷𝒕+𝟏
(𝑽)

ෝ𝒚𝐭+𝟏 = 𝐟(𝐱𝐭+𝟏; 𝜽𝒕+𝟏)
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Experiments: Datasets

Sunspot

• Monthly sunspot number from January 1749 to July 2020

• Historical data length 𝑚 = 48

• Forecast length 𝑛 = 5

Household Power Consumption

• Daily power consumption (global active power, global intensity, voltage) from 
December 16, 2006 to November 26, 2010

• Historical data length 𝑚 = 28

• Forecast length 𝑛 = 3
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Experiments: Competing Methods

Holt-Winters: exponential smoothing

OR-ELM: online recurrent extreme learning machine 

Recurrent neural network

• Pre-trained: no model update in online phase

• FTL: Follow-The-Leader retraining every 𝑏 steps

• MAML: meta-learning pre-training

• Online-SGD: constant learning rate

• Online-RMSprop: element-wise adaptive learning rate 

• WG: adapts SGD learning rate based on whether current sample is outlier or 
change point
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Experiments: Online Prediction Performance

• RNN and time series models
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Experiments: Online Prediction Performance

• LSTM and GRU
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Experiments: Sensitivity Analysis

• POLA-GD gradient descent hyperparameters
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Experiments: Sensitivity Analysis

• Online batch size 
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Summary

Proposed POLA method

• Automatically schedules SGD online learning rate

• Adapts online learning rate by assimilating training and testing procedure with 
meta-learning

 Model-agnostic

 Attains overall comparable or better predictive performance over competing 
methods across multiple datasets and network architectures
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