SELF-INFERENCE OF OTHERS' POLICIES FOR HOMOGENEOUS AGENTS IN COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Qifeng Lin School of Computer Science and Engineering, Sun Yat-Sen University

Qing Ling School of Computer Science and Engineering, Sun Yat-Sen University

Background

- Multi-agent reinforcement learning (MARL) remains t lenging research field and has various applications in control, multi-player games, etc.
- In cooperative MARL, agents are trained to cooperative global goal
- Partial observability: only local observation available global states
 - is one of the critical challenges in MARL
 - motivates a training paradigm named centralized decentralized execution (CTDE)
- Policy inference: infer policies of other agents
 - plays an important role in MARL
 - is helpful to improve coordination efficiency

Related Works

- Fully observable scenarios
 - AMS-A3C and AMF-A3C share learned parameters tra policy features, respectively
 - Attention Multi-agent DDPG (ATT-MADDPG) intro tion mechanism
 - \times Hard to access global states in real world
- Partially observable scenarios
 - Extra hidden representations of other agents' pol quired
 - Deep reinforcement opponent network (DRC)
 - Deep policy inference Q-network (DPIQN) ar icy inference recurrent Q-network (DPIRQN)
 - * Multi-agent DDPG with policy inference (MA
 - × Huge resource consumption
- \Rightarrow A self-inference approach to infer other agents' policies u
 - cooperative MARL
 - partially observable
 - CTDE
 - homogeneous agents

setting, called MADDPG-SI.

Advantages: significantly reduces computation and storage consumption.

Method

to be a chal-	Partially observable Markov decision process
n multi-robot	$< \mathcal{S}, \mathcal{O}, \mathcal{A}, \mathcal{P}, \mathcal{R}$:
ely achieve a	$\blacksquare S$: the sets of state space
	\mathcal{O} : the joint observation spaces { \mathcal{O}_1 ,
e rather than	\mathcal{A} : the joint action spaces { \mathcal{A}_1 ,, \mathcal{A}_N
	$\blacksquare \mathcal{R}: \text{ the joint rewards } \{\mathcal{R}_1, \dots, \mathcal{R}_N\}$
	The long-term return of agent <i>i</i> is $R_i = \sum_{t=0}^{I}$
training and	γ is a discount factor
	T is the time horizon
	\blacksquare $r_i^t \in \mathcal{R}_i$ is the instantaneous reward at
	Goal: find optimal policies $\mu_i: \mathcal{O}_i \times \mathcal{A}_i \rightarrow [0, 1]$
	Further, we parameterize the policy $oldsymbol{\mu}_i$ with $ heta$
	For critic part in MADDPG-SI, the update rule
	mizing the critic loss:
s and add ex-	$\mathcal{C}(\phi_i) = \mathbb{E}_{\mathbf{x},a,r, ilde{\mathbf{x}}\sim\mathcal{D}}[(\mathbf{Q}_i^{oldsymbol{\mu}_{ heta_i}}(\mathbf{x},oldsymbol{a}_1,\ldots)]$
S and add CA	$y_i = r_i + \gamma Q_i^{\mu_{\theta'_i}} (\tilde{\mathbf{x}}, a'_1, \dots, a'_N)$
oduces atten-	
	\mathcal{D} is the experience replay buffer. Only use agent <i>i</i> 's model to infer policies of o
	For actor part in MADDPG-SI, the update rul
olicies are re-	mizing the actor loss $\mathcal{L}(heta_i) - eta \mathcal{P}_{SI}(heta_i)$
ON)	where
nd deep pol-	$\mathcal{L}(heta_i) = - oldsymbol{Q}_i^{oldsymbol{\mu}_{ heta_i}}(\mathbf{x}, oldsymbol{a}_1, \dots, oldsymbol{a}_N)$
	$\mathcal{P}_{SI}(heta_i) = -\sum_{i=1}^{N} \mathbb{E}_{o_i,a_i}[\log$
ADDPG-PI)	$j \neq i$
under	and β is a positive scale factor that balances rience and learning from other agents' exper
	Compared with MADDPG-PI [1], MADDPG-S
	networks as given by $f_{PI} = 2N(N+1)$
	$f_{SI} = 4N.$

Therefore, the space complexities for MADDPG-PI and MADDPG-SI are $O(N^2)$ and O(N), respectively.

Experimental Results

- marks [1]

 - A shared reward:

As shown in **Fig. 1**, MADDPG-SI can achieve almost equivalent performance and even outperform MADDPG and MADDPG-PI in some cases. Fig. 2 shows that the agent of MADPPG-SI can be closer to landmarks compared with the one of MADDPG.

are landmarks and blue circles indicate agents.

References

pages 6379–6390, 2017.

$$\mathcal{O}_N$$

$$_0(\gamma)^t r_i^t$$

] to maximize $R = \sum_{i=1}^{N} R_i$. θ_i .

le of each agent *i* is by mini-

$$\begin{array}{l} \cdot, a_N |\phi_i) - y_i)^2], \\ a'_j = \mu_{\theta'_i}(o_j) \end{array}$$

$$\begin{array}{l} \text{(1)} \end{array}$$

other agents

$$\mathbf{v})|_{\mathbf{a}_i=\boldsymbol{\mu}_{\theta_i}(\mathbf{o}_i)}$$

(3) $[\mathbf{p}_{ heta_i}(\mathbf{a}_j|\mathbf{o}_j)]$

learning from its own experience.

Environment: cooperative navigation with N agents and L land-

- Task: agents occupy all the landmarks cooperatively

 sums up negative distances between agents and landmarks * every collision between the agents contributes -1

Four settings: (N=3, L=3), (N=4, L=4), (N=5, L=5), and (N=6, L=6).

(a) N = 5, L = 5 (b) N = 6, L = 6 (c) N = 5, L = 5 (d) N = 6, L = 6Fig. 2. Illustration of execution-stage performance of the agents trained by MADDPG in (a) and (b), and MADDPG-SI in (c) and (d). Small dark circles