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Introduction Classical Compressive Sensing

Linear Inverse Problem

Compressive Sensing:

Linear inverse problem with the measurement model:

y = Ax,
where Ac R™" x e Ry e R™ and m< n.

PO: min |x]o, st y=Ax
X
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Compressive Sensing using Generative Models (CSGM)
Compressive Sensing using Generative Models (CSGM)

Recover x € R” from y € R, such that m < n. The measurement model
is given as:
y = Ax, x= 69(2)7 (3)

where A € R™*" satisfies Set - Restricted Eigenvalue Condition (S-REC),
Gg is the generator model with latent input z € R¥ and parameter 6.

Definition: S-REC
[Bora et al., ICML, 2017] Let S C R". For some parameters v > 0,0 > 0,
a matrix A € R™*" is said to satisfy the S-REC(S,~, ) if Vx1,x € S,

[A(x1 — x2)l| = 7[[x1 — x2f| = 6 (4)

v
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Motivation and Contribution

Motivation

@ Natural images do not lie on a single connected manifold, but rather
on a union-of-submanifolds.

@ A single generator cannot correctly model a distribution that lies on
disconnected manifolds [Khayatkhoei et al., NeuRIPS, 2018].

@ Disconnected latent space model is considered for data lying on a
disconnected manifold.
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Motivation and Contribution

Contribution

@ We propose a union-of-submanifolds to model the true data
distribution.

@ An optimization framework, namely, proximal meta-learning (PML)
algorithm to promote sparsity into the latent variable.

@ Sample complexity bounds for the proposed union-of-submanifolds
model.

@ At higher compression ratio, the performance of SDLSS is superior to
state-of-art deep compressed sensing (DCS) [Wu et al., ICML, 2019]
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Signal Model

Union-of-Submanifolds

@ The latent variable z € R¥ is assumed to s-sparse.

@ Sparsity assumption on the input latent space Z divides the latent
space into (’;) subspaces W;.

@ The generator model Gg transforms each subspace W; to
sub-manifold S;.
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Signal Model

Union-of-Submanifolds

The domain of reconstruction is a union-of-submanifolds:

ng USH (5)

where S; is the submanifold generated by Gg(z), with ||zl < s.

Figure: Union-of-Submanifolds
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Sparsity Driven Latent Space Sampling (SDLSS)

Measurement model:
y=Ax st x=Gg(z), |z|o<s. (6)

x is assumed to lie in a union of sub-manifolds Ss g, .

Optimization problem:

min(lzllo st [ly —AGe(2)ll2 < e, (7)

)

with A satisfying set-restricted eigenvalue condition (S-REC) and z € R¥
is the latent space with sparsity at most s.
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Sparsity Driven Latent Space Samping (SDLSS)

Optimization cost:
mign (L + La), (8)
where

Lo =E{Eg(y,z) = |ly — AGo(2)|5 + || zllo}
La = Ex o {([|[Ax1 — 2], + 6 — 7llx1 — x2||,)*}

L and L represent the measurement loss and S — REC loss, respectively.
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Enforcing Sparsity

@ The proximal step is introduced to enforce sparsity in the latent space
via meta-learning [Finn et al., ICML, 2017].

Eo(yi, 2i) = |ly: — AGe(2:)II3 + l1zilo, (9)

A

2; = arg min Ey(y;, z),
z;
— I:)s (Z,' - ﬁvzf(yia Z,')) )

where f(y;, z;) = |lyi — AGg(z;)||3, B is the learning rate, and Ps(u) is the
hard-thesholding operator that sets all but the largest (in magnitude) s
elements of u to 0.
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SDLSS Algorithm with PML

Algorithm 1 :Sparsity Driven Latent Sampling (SDLSS) for Generative Prior

Input: data = {x,-},l-vzl, sensing matrix A, generator Gg, learning rate o, number of latent

optimization steps T, measurement error threshold € and sparsity factor s.

repeat
Initialize generator network parameter 6.
for i=1to N do
Measure the signal y; = Ax;
Sample z ~ N(0, /)
fort=1to T do
2; = Ps (zi — BVf(yi,zi))
end for
end for
L=Lc+ LA
Update 6 « 0 — a 2%
until ||y — AGg(2)|2 <€
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Theoretical Results

Theorem

Let Gg : R — R" be a generative model with d-layers with ReLU
activation and at most h neurons in each layer. Let A € R™*" be a
random Gaussian matrix with [ID entries such that A; ; ~ N/(0, %) and
satisfies S-REC(Ss.,, (1 — ),0). For any x € R”, if the number of
measurements given by y = Ax € R™ is O(sd log %) where s is sparsity
of the latent variable z, then with probability 1 — exp (~%2(m):

1Go(2) —xll2< € min  [|Go(z) — x||2 + 2. (10)

ZERK [|z]lo<s

where 2 minimizes ||y — AGg(2)||3 to within additive € of the optimum, C
is a constant, €2 is the asymptotic lower bound, and 0 < o < 1.
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MNIST:Effect of Sparsity

@ Reconstruction error on test data as a function of sparsity; m = 10
and latent dimension k = 784.
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MNIST:PSNR

@ PSNR evaluation of SDLSS and DCS as a function of measurements
m for the latent dimension k = 100 and sparsity s = 80.
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Results

Results:MNIST
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@ Deep Compressed Sensing (DCS) [Wu et al., ICML, 2019]
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Results:MNIST
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