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Introduction Classical Compressive Sensing

Linear Inverse Problem

Compressive Sensing:

Linear inverse problem with the measurement model:

y = Ax , (1)

where A ∈ Rm×n, x ∈ Rn, y ∈ Rm and m� n.

P0 : min
x

‖x‖0, s.t. y = Ax (2)
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Introduction Compressive Sensing using Generative Models (CSGM)

Compressive Sensing using Generative Models (CSGM)

Recover x ∈ Rn from y ∈ Rm, such that m� n. The measurement model
is given as:

y = Ax , x = Gθ(z), (3)

where A ∈ Rm×n satisfies Set - Restricted Eigenvalue Condition (S-REC),
Gθ is the generator model with latent input z ∈ Rk and parameter θ.

Definition: S-REC

[Bora et al., ICML, 2017] Let S ⊆ Rn. For some parameters γ > 0, δ ≥ 0,
a matrix A ∈ Rm×n is said to satisfy the S-REC(S, γ, δ) if ∀x1, x2 ∈ S,

‖A(x1 − x2)‖ ≥ γ‖x1 − x2‖ − δ (4)
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Motivation and Contribution

Motivation

Natural images do not lie on a single connected manifold, but rather
on a union-of-submanifolds.

A single generator cannot correctly model a distribution that lies on
disconnected manifolds [Khayatkhoei et al., NeuRIPS, 2018].

Disconnected latent space model is considered for data lying on a
disconnected manifold.
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Motivation and Contribution

Contribution

We propose a union-of-submanifolds to model the true data
distribution.

An optimization framework, namely, proximal meta-learning (PML)
algorithm to promote sparsity into the latent variable.

Sample complexity bounds for the proposed union-of-submanifolds
model.

At higher compression ratio, the performance of SDLSS is superior to
state-of-art deep compressed sensing (DCS) [Wu et al., ICML, 2019]
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Signal Model

Union-of-Submanifolds

The latent variable z ∈ Rk is assumed to s-sparse.

Sparsity assumption on the input latent space Z divides the latent
space into

(k
s

)
subspaces Wi .

The generator model Gθ transforms each subspace Wi to
sub-manifold Si .
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Signal Model

Union-of-Submanifolds

The domain of reconstruction is a union-of-submanifolds:

Ss,Gθ
=
⋃
i

Si , (5)

where Si is the submanifold generated by Gθ(z), with ‖z‖0 ≤ s.

Figure: Union-of-Submanifolds
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Sparsity Driven Latent Space Samping

Sparsity Driven Latent Space Sampling (SDLSS)

Measurement model:

y = Ax s.t x = Gθ(z), ‖z‖0 ≤ s. (6)

x is assumed to lie in a union of sub-manifolds Ss,Gθ
.

Optimization problem:

min
z ,θ
‖z‖0 s.t. ‖y − AGθ(z)‖2 ≤ ε, (7)

with A satisfying set-restricted eigenvalue condition (S-REC) and z ∈ Rk

is the latent space with sparsity at most s.
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Sparsity Driven Latent Space Samping

Sparsity Driven Latent Space Samping (SDLSS)

Optimization cost:

min
z,θ

(LG + LA) , (8)

where

LG = Ez{Eθ(y , z) = ‖y − AGθ(z)‖2
2 + ‖z‖0}

LA = Ex1,x2{(‖Ax1 − x2‖2 + δ − γ‖x1 − x2‖2)2}

LG and LA represent the measurement loss and S −REC loss, respectively.
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Proximal Meta Learning

Enforcing Sparsity

The proximal step is introduced to enforce sparsity in the latent space
via meta-learning [Finn et al., ICML, 2017].

Eθ(yi , z i ) = ‖yi − AGθ(z i )‖2
2 + ‖zi‖0, (9)

ẑi = arg min
zi

Eθ(yi , zi ),

= Ps (z i − β∇z f (yi , z i )) ,

where f (yi , z i ) = ‖yi − AGθ(z i )‖2
2, β is the learning rate, and Ps(u) is the

hard-thesholding operator that sets all but the largest (in magnitude) s
elements of u to 0.

EE, IISc SDLSS ICASSP, 2021 11 / 20



Proximal Meta Learning

SDLSS Algorithm with PML

Algorithm 1 :Sparsity Driven Latent Sampling (SDLSS) for Generative Prior

Input: data = {xi}Ni=1, sensing matrix A, generator Gθ , learning rate α, number of latent
optimization steps T , measurement error threshold ε and sparsity factor s.
repeat

Initialize generator network parameter θ.
for i = 1 to N do

Measure the signal yi = Axi
Sample z ∼ N (0, I )
for t = 1 to T do

ẑi = Ps (zi − β∇zf (yi , zi ))
end for

end for
L = LG + LA

Update θ ←− θ − α ∂L
∂θ

until ‖y − AGθ(ẑ)‖2 ≤ ε
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Theoretical Results

Theorem

Let Gθ : Rk → Rn be a generative model with d-layers with ReLU
activation and at most h neurons in each layer. Let A ∈ Rm×n be a
random Gaussian matrix with IID entries such that Ai ,j ∼ N (0, 1

m ) and
satisfies S-REC(Ss,Gθ

, (1− α), 0). For any x ∈ Rn, if the number of
measurements given by y = Ax ∈ Rm is O(sd log kh

s ), where s is sparsity

of the latent variable z , then with probability 1− exp (−Ω(m)):

‖Gθ(ẑ)− x‖2 ≤ C min
z∈Rk ,‖z‖0≤s

‖Gθ(z)− x‖2 + 2ε, (10)

where ẑ minimizes ‖y − AGθ(z)‖2
2 to within additive ε of the optimum, C

is a constant, Ω is the asymptotic lower bound, and 0 < α < 1.
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Results

MNIST:Effect of Sparsity

Reconstruction error on test data as a function of sparsity; m = 10
and latent dimension k = 784.
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Results

MNIST:PSNR

PSNR evaluation of SDLSS and DCS as a function of measurements
m for the latent dimension k = 100 and sparsity s = 80.
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Results

Results:MNIST

Ground truth DCS

 PSNR = 15.4 dB

SDLSS

PSNR = 15.6 dB

Deep Compressed Sensing (DCS) [Wu et al., ICML, 2019]
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Results

Results:MNIST
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