



### Keyword search using query expansion for graph-based rescoring of hypothesized detections

Authors: Van Tung Pham<sup>1,2</sup>, Haihua Xua<sup>2</sup>, Xiong Xiao<sup>2</sup>, Nancy F. Chen<sup>3</sup>, Eng Siong Chng<sup>1,2</sup>, Haizhou Li<sup>1,2,3</sup>

<sup>1</sup>School of computer Engineering, Nanyang Technological University, Singapore <sup>2</sup>Temasek Laboratories, Nanyang Technological University, Singapore <sup>3</sup>Institute for Infocomm Research, Singapore



Temasek Laboratories and School of Computer Engineering

Human Language Technology Department

### Introduction

• This work belongs to **Keyword Search (KWS)** - the task of finding all occurrences of a text keyword in a speech corpus



- Detection scores are estimated from a standard modelbased, parametric Automatic Speech Recognition (ASR)
- In this work we proposed a novel framework to rescore the list of detections using keyword examples extracted from training data





Human Language Technology Department

## Introduction (cont.)

- Main idea: if a detection is acoustically more similar to the keyword samples, it is more likely to be a correct detection
- The acoustic similarity can be estimated through Dynamic Time Wrapping (DTW)
  - DTW has shown to be successful in the Query-by-example task
  - It is a template-based, non-parametric approach => complementary with ASR scores





Human Language Technology Department

## Outline

- Proposed approach
  - The rescoring framework
  - Samples extraction
  - Rescore by multiple samples
  - Rescore by graph-based algorithm
- Experiment
  - Experimental setup
  - Experimental results, analysis and discussion
- Conclusions and future works





Human Language Technology Department

## Outline

- Proposed approach
  - The rescoring framework
  - Samples extraction
  - Rescore by multiple samples
  - Rescore by graph-based algorithm
- Experiment
  - Experimental setup
  - Experimental results, analysis and discussion
- Conclusions and future works



Temasek Laboratories and School of Computer Engineering

Human Language Technology Department

## The rescoring framework







Human Language Technology Department

### Samples extraction

- Estimate the time boundary of each word in training data using forced-alignment
- Consider keyword q =  $W_1 W_2 ... W_n$ 
  - If the whole sequence W<sub>1</sub> W<sub>2</sub>... W<sub>n</sub> appear in the training data, then we extract the whole speech segment at the found locations as samples
  - Otherwise, find samples of  $W_{\rm i}$  then concatenate them to form sample of q
    - To ensure quality, samples of W<sub>i</sub> should belong to same gender
    - Since number of generated samples is large, we randomly select 20 samples.



Human Language Technology Department

### Acoustic similarity estimation

 First we estimate the dynamic time warping (DTW) between 2 segments



• Then convert the DTW metric to similarity  $S(X,Y) = 1 - \frac{DTW_{max} - DTW(X,Y)}{DTW_{max} - DTW_{min}}$ 



**Technology Department** 

School of Computer Engineering

## Rescoring by multiple samples (RMS)

- Let d be a detection with raw ASR score C(d)
- Estimate the average similarity between d and all samples

AVG\_SIM(d) = 
$$\frac{1}{n} \sum_{i=1}^{n} S(d, x_i)$$

• The final confidence score is

 $C'(d) = C(d)^{\delta} AVG_SIM(d)^{1-\delta}$ 



Human Language **Technology Department** 

#### The Graph-based rescoring With Engineering sample (GBRWS)





• Previous works [1,2,3] use only detections to build the graph





Human Language Technology Department

## Outline

#### Proposed approach

- The rescoring framework
- Samples extraction
- Rescore by multiple sample
- Rescore by graph-based algorithm
- Experiment
  - Experimental setup
  - Experimental results
- Conclusion and future work





Human Language Technology Department

### Experimental setup

- NIST OpenKWS15 data set
  - Language: Swahili the surprise language of OpenKWS15 Evaluation
  - Training data: FullLP condition 40h.
  - Development data: 10h
  - Evaluation data: 15h evalpart1 released by NIST
  - Keyword list: eval keyword which 1860 keyword appear in evalpart1 data
    - We evaluate the performance of detected keyword

| Systems | Detected keywords | Keywords with samples |
|---------|-------------------|-----------------------|
| Word    | 1711              | 1509                  |
| Subword | 1620              | 1514                  |



Temasek Laboratories and Human Language School of Computer Engineering Technology Department

## Experimental setup (cont.)

- Evaluation metric
  - NIST define the Term-weighted value (TWV) as the metric for KWS

$$TWV(\theta) = 1 - \frac{1}{M} \sum_{k=1}^{M} ((P_{miss}(q_k, \theta) + \beta P_{fa}(q_k, \theta)))$$

- We use Maximum TWV (MTWV) as evaluation metric
- We also report the Detection Error Tradeoff (DET) curves
- Keyword search systems: We build word and subwordbased systems using Kaldi toolkit [4]
  - For subword, we use Morfessor toolkit[5] to split both word lexicon and word transcriptions to morpheme-based format.
  - ASR training: fbank feature, 3 gram LM, DNN acoustic model





Human Language Technology Department

### Experimental results

- 2 baselines
  - Raw ASR scores: Original detection scores
  - GBR: Graph based rescoring without training samples [1,2,3]
- MTWV scores

| Systems | Raw ASR scores | GBR    | RMS    | GBRWS  |
|---------|----------------|--------|--------|--------|
| Word    | 0.5616         | 0.5797 | 0.5727 | 0.5846 |
| Subword | 0.4716         | 0.5067 | 0.5028 | 0.5224 |

RMS:Rescoring by multiple samples GBRWS :Graph-based rescoring with sample





Human Language Technology Department

### Experimental results (cont.)





Temasek Laboratories and School of Computer Engineering

Human Language Technology Department

## Experimental results (cont.)

• Results for different keyword length







Human Language Technology Department

## Outline

- Proposed approach
  - The rescoring framework
  - Samples extraction
  - Rescore by multiple sample
  - Rescore by graph-based algorithm
- Experiment
  - Experimental setup
  - Experimental results, analysis and discussion
- Conclusion and future work



Infocomm Research

Temasek Laboratories and School of Computer Engineering

Human Language Technology Department

## Conclusion and future work

- Using keyword samples, together with acoustic similarity, improves the KWS performance
  - The graph based method is more effective than RMS method
  - The proposed approach benefits more for the subword system
  - Much improvement observed on short keywords
- Future work
  - The current method is applicable on seen-word keywords
  - We are investigating way to generate samples for an unseenword keyword by concatenating samples of its subwords



**Temasek Laboratories and** School of Computer Engineering Technology Department

Human Language

### References

[1] H. Y. Lee, Y. Zhang, E. Chuangsuwanich, and J. Glass, "Graph-based re-ranking using acoustic feature similarity between search results for spoken term detection on lowresource," in Proceedings of ICASSP, 2013

[2] Y. N. Chen, C. P. Chen, H. Y. Lee, C. Chan, and L. S. Lee, "Improved spoken term detection with graph-based re-ranking in feature space," in *Proceedings of ICASSP*, 2011.

[3] A. Norouzian, R. C. Rose, Sina Hamidi Ghalehjegh, and A. Jansen, "Zero resource graph-based confidence estimation for open vocabulary spoken term detection," in *Proceedings of ICASSP*, 2013.

[4] D. Povey et.al, "The kaldi speech recognition toolkit," in *Proceedings of ASRU*, 2011

[5] M. Creutz and K. Lagus, "Unsupervised discovery of morphemes," in *In Proceedings of the Workshop on Morphological and Phonological Learning of ACL-02*, 2002





**Temasek Laboratories and** School of Computer Engineering Technology Department

Human Language

# Thank you for listening ! Any question ?