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Sparsity Driven Latent Space Sampling for Generative Prior based Compressive Sensing

Vinayak Killedar, Praveen Kumar Pokala and Chandra Sekhar Seelamantula

1. Compressive Sensing using Generative Models (CSGM)

Recover x € R" from y € R™, such that m < n. The measurement model is given as:

y=Ax, x=Gg(2),
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5. Sparsity Driven Latent Space Sampling (SDLSS)

m [he measurement model is defined as:
y=Ax st x=Gg(z), |[z|o<s.

x is assumed to lie in the union of sub-manifolds S; g, -

where A € R™*"™ satisfies Set - Restricted Eigen Value Condition(S-REC), Gy is a

generator model with latent input z € R* and parameter 6.

Definition 1 [1]LetS C R™, v > 0,andd > 0. A matrix A € R™*" js said to satisfy

the S-REC(S,~,9) ifVxy,%x5 € S,

JA(x1 —x2)[[2 > 7||x1 — %22 — 0.

2. Union-of-Submanifolds

= The latent variable z € R” is assumed to s sparse.

m Sparsity s assumption on the input latent space Z divides the latent space into
(*) subspace W;.

m The generator model (G¢ transforms each subspace W, to sub-manifold ;.

m [he domain of the reconstructed signal is a union of sub-manifolds given as:
SS,G@ — US’M
i

where S; is the submanifold generated by Gg(z), with ||z||g < s.

3. Our Contributions

m We propose union-of-submanifolds to model the true data distribution.

m An optimization framework, namely, proximal meta-learning(PML) algorithm to
promote sparsity into the latent variable.

m Sample complexity bounds for the proposed union-of-submanifolds model

4. Theoretical Results

Theorem 1 Let Gg : R¥ — R™ be a generative model with d-layers with RelLU activa-
tion and at most h neurons in each layer and A € R™*" be a random Gaussian matrix
with IID entries such that A; ; ~ N (0, L) and satisfies S-REC(S; G, , (1 — ), 0). For
any x € R"™, if the number of measurements given by y = Ax € R™ js O(sd log %),
where s is sparsity of the latent variable z, then with probability 1 — exp (—(m)) ;

1Go(z) —x|2 < C 1Go(z) — x||2 + 2e,

min
zER® ||z|[0<s

where z minimizes ||y — AGg(z)||3 to within additive € of the optimum, C'is a constant,
() is asymptotic lower bound, and 0 < o < 1.

m The optimization problem is defined as:

st. |y — AGg(z)|2 <e,

min || z]jo

with A satisfying set-restricted eigenvalue condition (S-REC) and z € R” is the latent

space with sparsity at most s.

m The optimization cost is defined as:

mi@n (Lc+ LA),

where

Lo =E.{Fo(y,z) = |ly — AGo(2)|5 + ||z[0},
LA = Ewl,wz{(HAml — mQHQ + 0 — ||z — 332”2)2}»

m L and LA represent the measurement loss and S — REC' loss, respectively.

m The proximal step is introduced to enforce sparsity in the latent space via meta-
learning. We name the learning process as proximal meta-learning(PML).

Eo(yi,zi) = |yi — AGe(zi) |2 + |12i]lo.

Z; = arg min Fy(y., z;)
oy

7

= Py (ZZ' — 5vzf(yz'7 ZZ)) y

where f(y;,z;) = ||ly. — AGg(z;)||3, 3 is the learning rate, and P,(u) is the hard-
thesholding operator that sets all but the largest (in magnitude) s elements of u to 0.

6. SDLSS Algorithm with PML
Algorithm 1 : Sparsity Driven Latent Space Sampling (SDLSS) for Generative Prior

Input: data = {Xi},fil, sensing matrix A, generator Gg, learning rate o, number of
latent optimization steps 1, measurement error threshold ¢, and sparsity factor s.
repeat
Initialize generator network parameter 6.
for: =1to N do
Measure the signal y; + Ax;
Sample z ~ N (0, I)
fort =1to 1 do
z; = P (2; — BV f(yi,2:))

end for
end for
L=Lc+ LA
oL
Update 0 < 0 — a3z

until |jy — AGg(2)]|2 < ¢
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m Fig.1 MNIST:Reconstruction error on test data as a function of sparsity; m = 10
and latent dimension £ = 784.

m Fig.2 MNIST:PSNR evaluation of SDLSS and DCS as a function of measure-
ments m for the latent dimension k£ = 100 and sparsity s = 80.
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PSNR =15.4 dB
m Reconstructed images with PSNR [dB] for m = 20 measurements.

PSNR = 15.6 dB

8. Conclusions

m Sparsity in the latent space is enforced via the proposed proximal meta-learning
(PML).

m The range space of the generator network, which approximates the true data
distribution, is modelled as a union-of-submanifolds.

m Sample complexity bounds for the union-of-submanifolds signal model is a gen-
eralistion of the result in [1].
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