

1. Compressive Sensing using Generative Model

Recover $m{x} \in \mathbb{R}^n$ from $m{y} \in \mathbb{R}^m$, such that $m \ll n$. The measurement

$$y = Ax$$
, $x = G_{\theta}(z)$,

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ satisfies Set - Restricted Eigen Value Condition generator model with latent input $\boldsymbol{z} \in \mathbb{R}^k$ and parameter $\boldsymbol{\theta}$.

Definition 1 [1] Let $S \subseteq \mathbb{R}^n$, $\gamma > 0$, and $\delta \ge 0$. A matrix $\mathbf{A} \in \mathbb{R}^{m \times 2}$ the S-REC(S, γ, δ) if $\forall \mathbf{x}_1, \mathbf{x}_2 \in S$,

 $\|\mathbf{A}(\mathbf{x}_1 - \mathbf{x}_2)\|_2 \ge \gamma \|\mathbf{x}_1 - \mathbf{x}_2\|_2 - \delta.$

2. Union-of-Submanifolds

- The latent variable $z \in \mathbb{R}^k$ is assumed to s sparse.
- Sparsity s assumption on the input latent space \mathbb{Z} divides the latent space \mathbb{Z} by the second sec $\kappa)$ subspace \mathcal{W}_i .
- The generator model \mathbf{G}_{θ} transforms each subspace \mathcal{W}_i to sub-r
- The domain of the reconstructed signal is a union of sub-manifol

$$\mathcal{S}_{s,\mathsf{G}_{\boldsymbol{\theta}}} = \bigcup_{i} \mathcal{S}_{i},$$

where \mathcal{S}_i is the submanifold generated by $G_{\theta}(\mathbf{z})$, with $\|\mathbf{z}\|_0 \leq s$.

3. Our Contributions

- We propose union-of-submanifolds to model the true data distrib
- An optimization framework, namely, proximal meta-learning(PN) promote sparsity into the latent variable.
- Sample complexity bounds for the proposed union-of-submanifold

4. Theoretical Results

Theorem 1 Let $G_{\theta} : \mathbb{R}^k \to \mathbb{R}^n$ be a generative model with d-layers tion and at most h neurons in each layer and $\mathbf{A} \in \mathbb{R}^{m imes n}$ be a random with IID entries such that $\mathbf{A}_{i,j} \sim \mathcal{N}(0, \frac{1}{m})$ and satisfies S-REC($\mathcal{S}_{s,\mathsf{G}}$ any $\mathbf{x} \in \mathbb{R}^n$, if the number of measurements given by $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^n$ where s is sparsity of the latent variable z, then with probability $1 - \frac{1}{2}$

$$\|\mathsf{G}_{\boldsymbol{\theta}}(\hat{\mathbf{z}}) - \mathbf{x}\|_{2} \le C \min_{\mathbf{z} \in \mathbb{R}^{k}, \|\mathbf{z}\|_{0} \le s} \|\mathsf{G}_{\boldsymbol{\theta}}(\mathbf{z}) - \mathbf{x}\|_{2} + 2$$

where \hat{z} minimizes $\|y - AG_{\theta}(z)\|_2^2$ to within additive ϵ of the optimum Ω is asymptotic lower bound, and $0 < \alpha < 1$.

Sparsity Driven Latent Space Sampling for Generative Prior based Compressive Sensing

	/inayak Killedar, Praveen Kumar Pokala and Department of Electrical Er Indian Institute of Science, Bangalo Email: {vinayakk1, praveenkumar}@iisc.ac.ir
els (CSGM)	5. Sparsity Driven Latent Space
ent model is given as:	 The measurement model is defined as: $y = Ax$ s.t $x = G_{ heta}(z)$,
on(S-REC), $\mathbf{G}_{oldsymbol{ heta}}$ is a	x is assumed to lie in the union of sub-manifolds \mathcal{S}_s
	The optimization problem is defined as:
$n \times n$ is said to satisfy	$\min_{\boldsymbol{z}, \boldsymbol{\theta}} \ \boldsymbol{z} \ _0$ s.t. $\ \boldsymbol{y} - \mathbf{A} G_{\boldsymbol{\theta}} \ $
,	with \mathbf{A} satisfying set-restricted eigenvalue condition space with sparsity at most s .
	The optimization cost is defined as:
	$\min_{\mathbf{z}, \boldsymbol{\theta}} \left(\mathcal{L}_{G} + \mathcal{L}_{A} \right)$
latent space into	z,e where
atom space into	$\mathcal{L}_{G} = \mathbb{E}_{\boldsymbol{z}} \{ E_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z}) = \ \boldsymbol{y} - A G \}$
-manifold \mathcal{S}_i .	$\mathcal{L}_{\mathbf{A}} = \mathbb{E}_{oldsymbol{x}_1,oldsymbol{x}_2} \left\{ \left(\left\ \mathbf{A} oldsymbol{x}_1 - oldsymbol{x}_2 ight\ _2 + oldsymbol{a}_2 ight\} ight\}$
olds given as:	$\blacksquare \ \mathcal{L}_{G}$ and $\mathcal{L}_{\mathbf{A}}$ represent the measurement loss and \mathcal{S}
olus given as.	The proximal step is introduced to enforce sparsity learning. We name the learning process as proxima
S.	$E_{\theta}(\mathbf{y}_i, \mathbf{z}_i) = \ \mathbf{y}_i - \mathbf{A}\mathbf{G}_{\theta}(\mathbf{z}_i)\ _2^2 +$
	$\hat{\boldsymbol{z}}_i = rg \min_{\boldsymbol{z}_i} E_{\theta}(\boldsymbol{y}_i, \boldsymbol{z}_i)$
	$=P_{s}\left(oldsymbol{z}_{i}-eta abla abla _{oldsymbol{z}}f(oldsymbol{y}_{i},oldsymbol{z}_{i},$
ibution.	where $f(y_i, z_i) = \ y_i - AG_{\theta}(z_i)\ _2^2$, β is the learn the sholding operator that sets all but the largest (in matrix)
ML) algorithm to	6. SDLSS Algorithm with
-	Algorithm 1 : Sparsity Driven Latent Space Sampling
olds model	Input: data = $\{\mathbf{x}_i\}_{i=1}^N$, sensing matrix A , generator latent optimization steps T , measurement error three
	repeat Initialize generator network parameter θ .
s with ReLU activa-	for $i=1$ to N do
om Gaussian matrix	Measure the signal $\mathbf{y}_i \leftarrow \mathbf{A}\mathbf{x}_i$
$G_{\theta}, (1-\alpha), 0).$ For	Sample $\mathbf{z} \sim \mathcal{N}(0, I)$ for $t = 1$ to T do
\mathbb{R}^m is $\mathcal{O}(sd\log\frac{kh}{s})$, $\exp^{(-\Omega(m))}$:	$\hat{\mathbf{z}}_i = P_s \left(\mathbf{z}_i - \beta \nabla_{\mathbf{z}} f(\mathbf{y}_i, \mathbf{z}_i) \right)$
CAP .	end for
$2\epsilon,$	end for
	$\mathcal{L} = \mathcal{L}_{G} + \mathcal{L}_{A}$ Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}$
Im, C is a constant,	until $\ \boldsymbol{y} - \mathbf{A}G_{\boldsymbol{\theta}}(\hat{\boldsymbol{z}})\ _2 \leq \epsilon$
-	

d Chandra Sekhar Seelamantula

Engineering lore - 560012, India in, chandra.sekhar@ieee.org

Sampling (SDLSS)

$$\|\boldsymbol{z}\|_0 \leq s.$$

 $ar{\mathsf{S}}_{s,\mathsf{G}_{m{ heta}}}$.

 $\|\boldsymbol{z}\|_2 \leq \epsilon,$

(S-REC) and $\mathbf{z} \in \mathbb{R}^k$ is the latent

$$\mathbf{A})\,,$$

$$egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & \delta & \delta & \delta & \gamma \| m{x}_1 - m{x}_2 \|_2)^2 \}, \end{aligned}$$

S - REC loss, respectively.

ty in the latent space via metamal meta-learning(PML).

$$+ \|\mathbf{z}_i\|_0,$$

 $(\boldsymbol{z}_i)),$

rning rate, and $\mathsf{P}_s(\mathbf{u})$ is the hardmagnitude) s elements of \mathbf{u} to 0.

h PML

(SDLSS) for Generative Prior

or G_{θ} , learning rate α , number of eshold ϵ , and sparsity factor s.

- Fig.1 MNIST:Reconstruction error on test data as a function of sparsity; m = 10and latent dimension k = 784.
- ments m for the latent dimension k = 100 and sparsity s = 80.

8. Conclusions

- (PML).
- distribution, is modelled as a union-of-submanifolds.
- eralistion of the result in [1].

[1] A. Bora, A. Jalal, E. Price, and A. G. Dimakis "Compressed Sensing using Generative Models," in Proc. International Conference on Machine Learning, pp. 537–546, 2017.

[2] W. Yan, R. Mihaela, and L. Timothy "Deep Compressed Sensing," in Proc. International Conference on Machine Learning, pp. 1349–1353, 2019.

[3] M. Khayatkhoei, K. M. Singh, and A. Elgammal "Disconnected Manifold Learning for Generative Adversarial Networks," in Proc. Advances in Neural Information Processing Systems, pp. 7343–7353, 2018.

[4] V. Shah and C. Hegde "Solving Linear Inverse Problems using GAN Priors: An Algorithm with Provable Guarantees," in Proc. International Conference on Acoustics, Speech, and Signal Processing, pp. 4609–4613, 2018.

[5] C. Finn, P. Abbeel, and S. Levine "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks," in Proc. International Conference on Machine Learning, pp. 1126–1135, 2017.

Acknowledgment

- MATRICS grant.
- Robert Bosch Center for Cyber Physical Systems (RBCCPS).

■ Fig.2 MNIST:PSNR evaluation of SDLSS and DCS as a function of measure-

Sparsity in the latent space is enforced via the proposed proximal meta-learning

• The range space of the generator network, which approximates the true data

Sample complexity bounds for the union-of-submanifolds signal model is a gen-

References

Science and Engineering Research Board (SERB) Core Research Grant and