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Abstract

This work examines the problem of learning the topology of a network (graph learning) from the signals produced at a subset
of the network nodes (partial observability). This challenging problem was recently tackled assuming that the topology is drawn
according to an Erdős-Rényi model, for which it was shown that graph learning under partial observability is achievable, exploiting in
particular homogeneity across nodes and independence across edges. However, several real-world networks do not match the optimistic
assumptions of homogeneity/independence, for example, high heterogeneity is often observed between very connected nodes (hubs)
and scarcely connected peripheral nodes. Random graphs with preferential attachment were conceived to overcome these issues. In
this work, we discover that, over first-order vector autoregressive systems with a stable Laplacian combination matrix, graph learning
is achievable under partial observability, when the network topology is drawn according to a popular preferential attachment model
known as the Bollobás-Riordan model.

Considered Scenario

Diffusion Model

Vector AutoRegressive (VAR) dynamics:

yk,i =
N∑
`=1

ak` y`,i−1 + xk,i (1)

having Laplacian combination matrix A = [ak`], with:ak` ∝ d−1
max, if nodes k and ` are connected

ak` = 0, otherwise
and with akk chosen to make the matrix doubly stochastic

•Boldface font for random variables
•N : total number of network nodes
•k, ` = 1, . . . , N : node indices
• i = 1, 2, . . .: time instants
•xk,i: input signal of node k at time i
•yk,i: output signal of node k at time i
•dmax: maximum node degree

Partial Observability

We observe the signals yk,i emitted only by the nodes belonging to a subset S. (A subscript S denotes sub-
matrices relative to S). Let R0, R1 be the steady-state covariance and one-lag covariance matrices of yk,i

Granger Predictor forAS

AS = [R1R
−1
0 ]S.

Here the covariance matrices rela-
tive to all nodes are necessary

Partial Granger Predictor

ÂS = [R1]S ([R0]S)−1.

Here only the covariance matrices
relative to the probed nodes are used

Issue

AS 6= ÂS.

The unobserved nodes intro-
duce an unavoidable error

Bollobás-Riordan Random Graphs

The Bollobás-Riordan construction [1] produces a multi-graph (multiple edges allowed)

•Start from an initial multi-graph M(1) with one node and η ∈ N edges
•For n = 2, . . . , N , build the multi-graph M(n) by adding to M(n− 1) a new node n and η new edges
•Preferential attachment: the probability of connecting the new node n to node k is ∝ the degree of k

•After the multi-graph M(N) is built, uproot the repeated edges and the self-loops from it
•The resulting graph is used in the VAR diffusion model (1)

Main Result

Theorem 1
Let ε > 0 and let ξ ∈ (0, 1) be an arbitrary fraction
of probed nodes, namely, |S|/N → ξ as N → ∞.
Then, there exists a random variable Γ > 0 such that
ÂS (in bold because the graph is random) satisfies the
following properties with high probability asN →∞.
If k, ` ∈ S are connected we have:

(1− ε)Γ <
√
N âk` < (1 + ε)Γ, (2)

whereas if k and ` are unconnected we have:
0 <
√
N âk` < εΓ. (3)

•The entries of
√
NÂS corresponding to connected

pairs are clustered around a value Γ > 0, see (2)

•The entries of
√
NÂS corresponding to uncon-

nected pairs are clustered around zero, see (3)

Take-Away Message

The graph of the probed nodes can be retrieved
from ÂS via standard clustering algorithms

Illustrative Examples
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Figure 1: Illustration of Theorem 1 for three networks ofN = 100
nodes, and fraction of probed nodes ξ = 0.5. Probed nodes are
displayed with black circles, with radius proportional to their
degree. We show the entries of the estimated matrix, scaled
by
√
N , ordered so that the entries for unconnected pairs come

first. The dashed line displays the gap Γ. Top: realization of a
Bollobás-Riordan graph. Bottom: graph of 100 nodes extracted
from a real-world network of routers [7].

Performance
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Figure 2: Probability of correct graph recovery, computed over
103 Monte Carlo runs, as a function of N . Solid line: limiting
estimator with true covariances. Dashed line: empirical estima-
tor with sample covariances computed over 105 samples.
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