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Fundamental Questions
]

0 Achievability: Given a networked system, is it possible to learn the
underlying topology from the observable samples?

0 Hardness: Assuming an unlimited number of samples, how hard is to
retrieve the graph? (large matrix inversion, NP-hard search, ...)

O Sample complexity: How does the performance scale with the number
of samples?
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Several Disciplines Involved

1 Signal Processing. G. Mateos, S. Segarra, A. Marques, and A. Ribeiro, “Connecting the dots:
|dentifying network structure via graph signal processing,” IEEE SP Mag., 2019

) Statistics. V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent variable graphical model
selection via convex optimization,” Ann. Statist., 2012

) Computer Science. A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky, “High-dimensional
Gaussian graphical model selection: Walk summability and local separation criterion,” JMLR, 2012

1 Conftrol Theory. D. Materassi and M. V. Salapaka, “On the problem of reconstructing an unknown
topology via locality properties of the Wiener filter,” IEEE Trans. Autom. Control, 2012

a H. Litkepohl, New Introduction to Multiple Time Series Analysis, Springer, 2005



Several Terminologies
I

Network tomography
Structure learning
Topology inference
Graph learning
Partial observability



State of the Art

O Results on achievability available under full observability

O Results on achievability available under partial observability for Graphical Models
(no dynamics)

1 Recent results on achievability available under partial observability and dynamical
systems for ErdSs-Rényi random graphs (homogeneous setting, all nodes are equal)

V. Matta, A. Santos, and A. H. Sayed, “Graph learning under partial observability,” Proc. IEEE, 2020



Main Contribution
]

O Results on achievability available under full observability

O Results on achievability available under partial observability for Graphical Models
(no dynamics)

1 Recent results on achievability available under partial observability and dynamical
systems for ErdSs-Rényi random graphs (homogeneous setting, all nodes are equal)

4 . . . e )
New results on achievability under partial observability and

dynamical systems for Bollobds-Riordan random graphs

9 (heterogeneous setting, scale-free behavior) P

V. Matta, A. Santos, and A. H. Sayed, “Graph learning under partial observability,” Proc. IEEE, 2020



Dynamical System
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(Vector AutoRegressive)

VAR model:
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Note: two nodes are correlated even if they are not
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Very Well-Known Problem

Exploiting the diffusion mechanism, we have:

one-lag steady-state steady-state
— — —
covariance Rl — ARO covariance

best linear predictor

[ A — R]_R[]_l] (aka Granger predictor)




Very Well-Known Problem

Exploiting the diffusion mechanism, we have:

one-lag steady-state 2 Yy steady-state
— - _—
empirical covariance Rl — ARU empirical covariance

~ e | best linear predictor
A — Rl RO ” (aka Granger predictor)

e D
This is useful since there are many ways to estimate

the covariance matrices from the output measurements




Partial Observability
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Considered Class of Matrices

]
Uy 1 Laplacian combination matrix
dmax connected entries inversely proportional to the maximum degree
4 )
Popular choice for distributed processing algorithms
g (e.g., diffusion or consensus algortihms) )

A. H. Sayed, Adaptation, learning, and optimization over networks, Found. Trends Mach. Learn., 2014



Bollobas-Riordan Model
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Bollobdas-Riordan Multi-Graph Construction

A Bollobds-Riordan multi-graph of size NV and parameter 7 € N s
obtained by the following iterative procedure, consisting of /V steps

Step 1

Build a deterministic multi-graph with one node and 7} self-loops

Steps 2,...,N

Starting from the multi-graph built at the previous step, add a new node
and 7) new edges according to a preferential attachment rule



Step-by-Step lllustration
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one node, n = 3 self-loops

Step 1 Build the initial multi-graph
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Step-by-Step lllustration
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Preferential Atachment Rule
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From Multi-Graphs to Graphs

1
Remove self-loops and redundant edges




From Multi-Graphs to Graphs

[Final Bollobas-Riordan graph ]




Erdos-Rényi vs. Bollobds-Riordan
1

Erdos-Rényi

B. Bollobds, Random Graphs, Cambridge University Press, 2001.
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Erdds-Rényi Bollobas-Riordan

B. Bollobds, Random Graphs, Cambridge University Press, 2001.



Technical Tools

0 Random Graphs. Asymptotic behavior of maximum
degree over scale-free graphs

0 Statistical Learning. Statistical concentration behavior of
some relevant network descriptors (challenging issue, due
to dependencies introduced by scale-free graphs)



Guarantees of Topology Estimation
I

Theorem 1 There exists a positive random variable I' such
that the estimator:

As(N) = [Ry(N)]s ([Ro(N)]s) ™"

satisfies the following properties with high probability as
N — oo. Let e > 0. For k.t € 8, if k and U are connected
we have:

(1 -6 < VNaw(N) < (1+ €T,
whereas if k and { are unconnected we have:

0< \/Nakg(N) < el



Main Result: Identifiability Gap
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Single Hub

-
B} [ 50% of the total agents are probed ]
,g 0.16 -

=014 -

— - . A

= 012 1 unconnected pairs N\

5 01|+ connected pairs N 7

- , Vs
.9008_ _____ ga‘pI‘ A .' '..o i s
Eg O P . .- '.' .‘. i :

2 0.06 - AT
S i Jy .o »

S 004 | .

g

—= 002 -

O

N

() ‘
0 500 1000 1500

Vectorized and rearranged (k,£) pairs




Multiple Hubs
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Performance
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Real Topologies: Network of Routers
I
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R. A. Rossi and N. K. Ahmed, “The Network Data Repository with Interactive Graph Analytics and Visualization,” in
Proc. AAAI Conference on Artificial Intelligence (AAAI), 2015



Main Advances
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[ we introduce dynamics ]

1 Recent results on achievability available under partial observability and dynamical
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The End
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