
1

Learning Bollobás-Riordan Graphs under 

Partial Observability

Michele Cirillo* Vincenzo Matta* Ali H. Sayed**

*DIEM University of Salerno **EPFL School of EngineeringICASSP 2021



2

The Problem

true topology

estimated topology



probed

agents

h

k

h

j

k

topology 

inference

The Problem

network solving a distributed processing task 

(e.g., distributed detection)

j

agents’ signals

estimated topology



probed

agents

h

k

h

j

k

topology 

inference

The Problem

network solving a distributed processing task 

(e.g., distributed detection)

j

agents’ signals

estimated topology



Fundamental Questions

5

 Achievability: Given a networked system, is it possible to learn the 

underlying topology from the observable samples? 

 Hardness: Assuming an unlimited number of samples, how hard is to 

retrieve the graph? (large matrix inversion, NP-hard search, …)

 Sample complexity: How does the performance scale with the number

of samples?
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Several Disciplines Involved

❑ Signal Processing. G. Mateos, S. Segarra, A. Marques, and A. Ribeiro, “Connecting the dots: 

Identifying network structure via graph signal processing,” IEEE SP Mag., 2019

❑ Statistics. V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent variable graphical model 

selection via convex optimization,” Ann. Statist., 2012

❑ Computer Science. A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky, “High-dimensional 

Gaussian graphical model selection: Walk summability and local separation criterion,” JMLR, 2012

❑ Control Theory. D. Materassi and M. V. Salapaka, “On the problem of reconstructing an unknown 

topology via locality properties of the Wiener filter,” IEEE Trans. Autom. Control, 2012

❑ Economics. H. Lütkepohl, New Introduction to Multiple Time Series Analysis, Springer, 2005 



9

Network tomography

Structure learning

Topology inference

Graph learning

Partial observability

Latent variables

...

Several Terminologies
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State of the Art

❑ Results on achievability available under full observability

❑ Results on achievability available under partial observability for Graphical Models

(no dynamics)

❑ Recent results on achievability available under partial observability and dynamical 

systems for Erdős-Rényi random graphs (homogeneous setting, all nodes are equal)

V. Matta, A. Santos, and A. H. Sayed, “Graph learning under partial observability,” Proc. IEEE, 2020
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Main Contribution

❑ Results on achievability available under full observability

❑ Results on achievability available under partial observability for Graphical Models     

(no dynamics)

❑ Recent results on achievability available under partial observability and dynamical 

systems for Erdős-Rényi random graphs (homogeneous setting, all nodes are equal)

New results on achievability under partial observability and 

dynamical systems for Bollobás-Riordan random graphs

(heterogeneous setting, scale-free behavior)

V. Matta, A. Santos, and A. H. Sayed, “Graph learning under partial observability,” Proc. IEEE, 2020
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Very Well-Known Problem

Exploiting the diffusion mechanism, we have:
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best linear predictor
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best linear predictor

(aka Granger predictor)

one-lag steady-state

empirical covariance

steady-state

empirical covariance

This is useful since there are many ways to estimate 

the covariance matrices from the output measurements

Very Well-Known Problem
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Considered Class of Matrices

Laplacian combination matrix 

connected entries inversely proportional to the maximum degree

A. H. Sayed, Adaptation, learning, and optimization over networks, Found. Trends Mach. Learn., 2014

Popular choice for distributed processing algorithms 

(e.g., diffusion or consensus algortihms)
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21A Bollobás-Riordan multi-graph of size     and parameter              is 

obtained by the following iterative procedure, consisting of     steps

Step 1

Build a deterministic multi-graph with one node and    self-loops

Steps 2,…,N

Starting from the multi-graph built at the previous step, add a new node 

and    new edges according to a preferential attachment rule

Bollobás-Riordan Multi-Graph Construction



Step-by-Step Illustration
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From Multi-Graphs to Graphs
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Erdős-Rényi vs. Bollobás-Riordan
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B. Bollobás, Random Graphs, Cambridge University Press, 2001. 
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Erdős-Rényi vs. Bollobás-Riordan

B. Bollobás, Random Graphs, Cambridge University Press, 2001. 



Technical Tools

 Random Graphs. Asymptotic behavior of maximum 
degree over scale-free graphs

 Statistical Learning. Statistical concentration behavior of 
some relevant network descriptors (challenging issue, due 
to dependencies introduced by scale-free graphs)
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Guarantees of Topology Estimation



Main Result: Identifiability Gap

estimated matrix entries for 

connected pairs

estimated matrix entries for 

unconnected pairs

identifiability

gap

cl
u
st

e
ri

n
g



Single Hub
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50% of the total agents are probed



Multiple Hubs
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Performance
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15% of the total 

agents are probed



Real Topologies: Network of Routers

51

R. A. Rossi and N. K. Ahmed, “The Network Data Repository with Interactive Graph Analytics and Visualization,” in 
Proc. AAAI Conference on Artificial Intelligence (AAAI), 2015

50% of the total agents are probed
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Main Advances

❑ Results on achievability available under full observability

❑ Results on achievability available under partial observability for Graphical Models

(no dynamics)

❑ Recent results on achievability available under partial observability and dynamical 

systems for Erdős-Rényi models (homogeneous setting, all nodes are equal)
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Main Advances
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❑ Recent results on achievability available under partial observability and dynamical 

systems for Erdős-Rényi models (homogeneous setting, all nodes are equal)

we allow for a large number of 

unobserved agents

we introduce dynamics

we consider preferential attachment models
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