ERROR ESTIMATE IN SECOND-ORDER CONTINUOUS-TIME SIGMA-DELTA MODULATORS

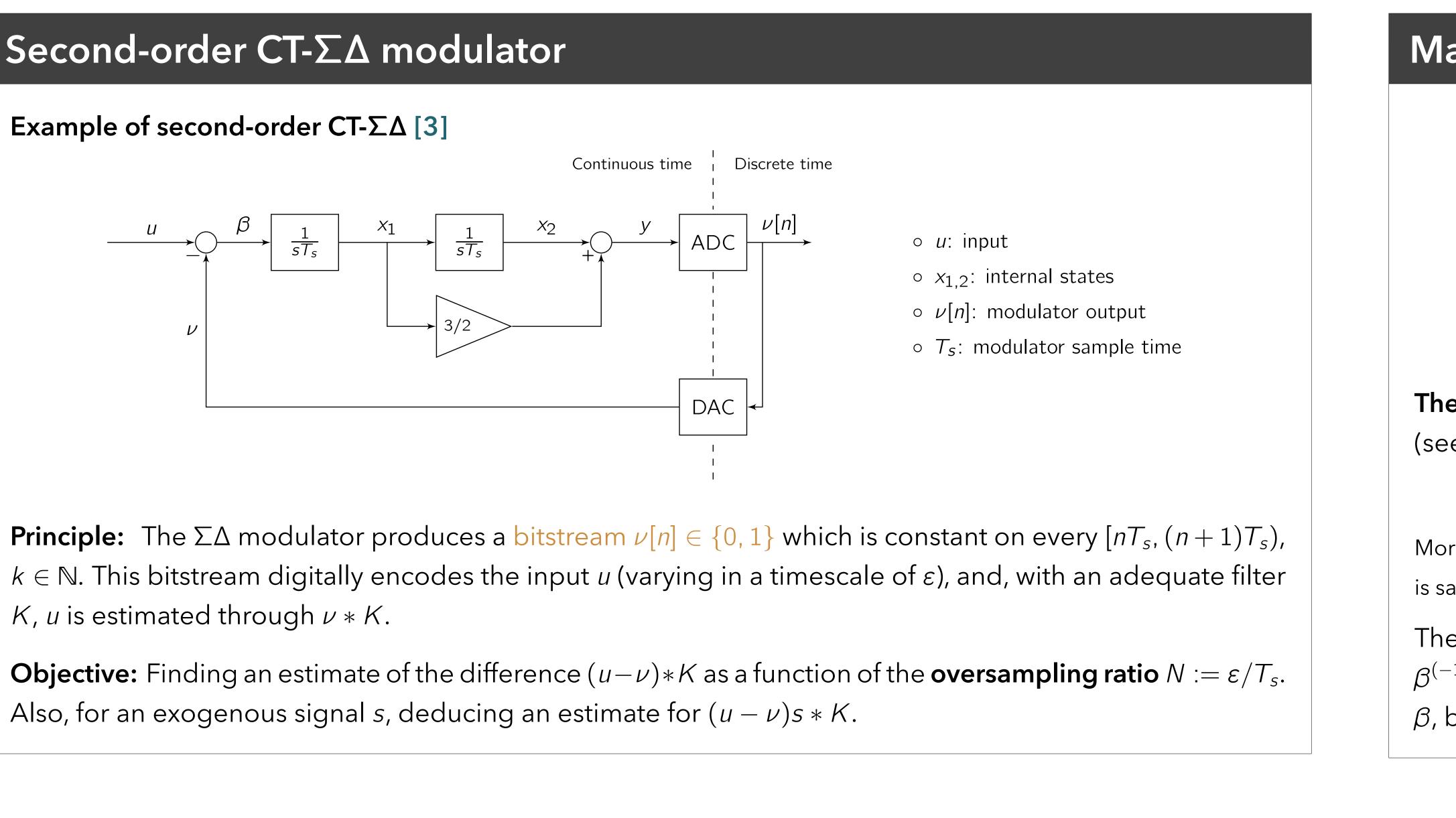
Dilshad Surroop^{1,2} · Pascal Combes¹ · Philippe Martin² ¹Centre Automatique et Systèmes – Mines Paristech · ²Schneider Electric

Context

Continuous-Time Sigma-Delta (CT- $\Sigma\Delta$) modulators are oversampling 1-bit Analog-to-Digital converters that may provide higher sampling 1-bit approximation errors are established for high-order discrete time ΣΔ modulators [2], theoretical analysis of the error between the filtered output and the input remain scarce for CT-ΣΔ modulators. We developped a general framework to study this error: under regularity assumptions on the input and the filtering kernel, we prove for a second-order CT- $\Sigma\Delta$ that the **error estimate is in o**($1/N^2$), where N is the oversampling ratio.

Second-order CT- $\Sigma\Delta$ modulator

Example of second-order CT- $\Sigma\Delta$ [3]

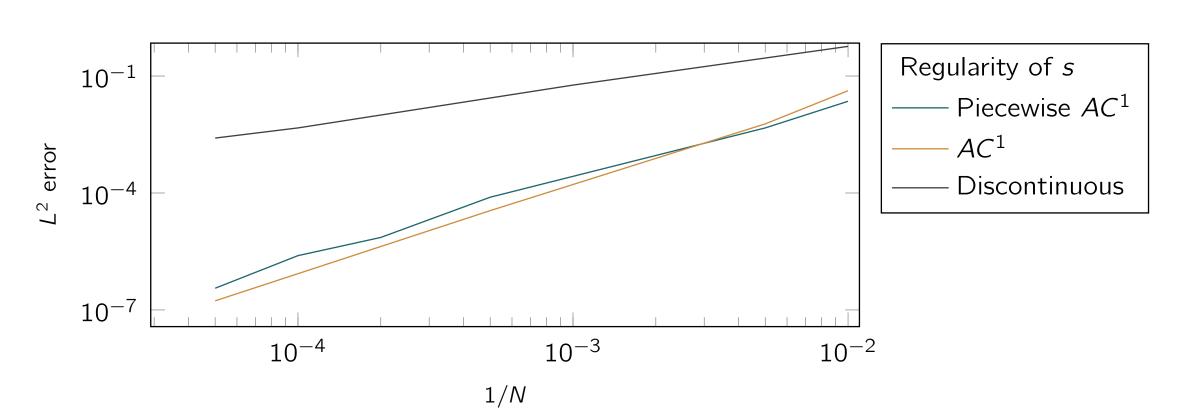


K, u is estimated through $\nu * K$.

Numerical results

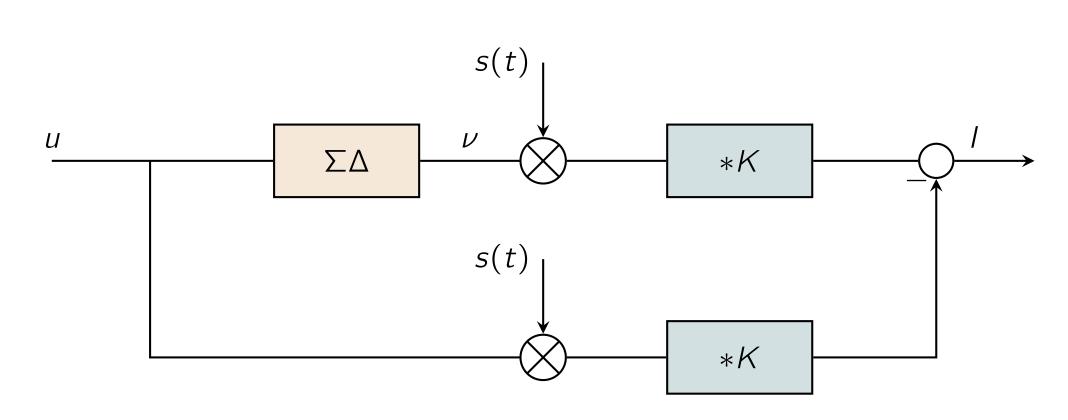
Asymptotic behavior of the L2-norm $||I||_2$ of the error I(t) with respect to the oversampling ratio N for various signals s (resp. piecewise AC^1 , AC^1 and discontinuous signals).

Selected kernel: third-order B-spline $K = \varepsilon^{-3} \times 1_{[0,\varepsilon]} * 1_{[0,\varepsilon]} * 1_{[0,\varepsilon]}$



Slope = approximation order: 1 (discontinuous), 2 (piecewise AC^1), 2.3 (AC^1)

Main result



Theorem: Under some regularity assumptions on s and K, the filtered input filtered output difference I(t)(see diagram above) satisfies

$$I(t) := \int_{-\infty}^{+\infty} \beta(N\sigma) s(\sigma) K^k(t-\sigma) \, d\sigma = o(t)$$

More precisely: if s is differentiable and its derivative s' is absolutely continuous (resp. piecewise absolutely continuous), then s is said to be AC^1 (resp. piecewise AC^1), and $I(t) = o(1/N^2)$ (resp. $O(1/N^2)$).

The outline of the proof is twofold: first we prove that the input-output difference β has a zero-mean primitive $\beta^{(-1)}$, which has itself a zero-mean primitive $\beta^{(-2)}$; then we show that for this very specific type of function β , based on a **generalized Riemann-Lebesgue lemma**, the estimate on I(t) holds.

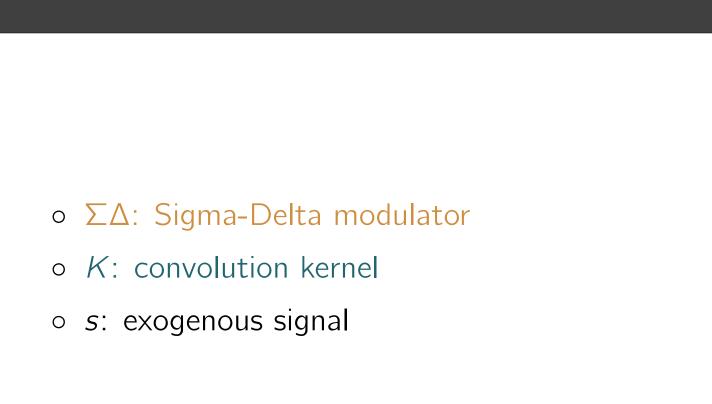
What next?

• Extension to various typologies of $\Sigma\Delta$ modulator (MASH, CRFB, CIFB, etc.) • Generalization to **nth-order CT-ΣΔ modulator**

Selected bibliography

[1] Maurits Ortmanns and Friedel Gerfers, Continuous- time sigma-delta A/D conversion, fundamentals, performance limits and robust implementations. Berlin: Springer, vol. 21, Springer, 01 2006. [2] Ingrid Daubechies and Ron DeVore, "Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order," Annals of Mathematics, vol. 158, no. 2, pp. 679-710, 2003.

[3] Richard Schreier and Gabor C Temes, Understanding delta-sigma data converters, Wiley, NY, 2005.



$(1/N^2)$