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Context

Continuous-Time Sigma-Delta (CT-Σ∆) modulators are oversampling 1-bit Analog-to-Digital converters that may provide higher sampling rates and lower power consumption than their discrete counterpart [1]. Whereas
approximation errors are established for high-order discrete time Σ∆modulators [2] , theoretical analysis of the error between the filtered output and the input remain scarce for CT-Σ∆modulators. We developped a general
framework to study this error: under regularity assumptions on the input and the filtering kernel, we prove for a second-order CT-Σ∆ that the error estimate is in o(1/N2), where N is the oversampling ratio.

Second-order CT-ΣΣΣ∆∆∆modulator

Example of second-order CT-ΣΣΣ∆∆∆ [3]
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◦ u: input

◦ x1,2: internal states

◦ ν[n]: modulator output

◦ Ts : modulator sample time

Principle: The Σ∆modulator produces a bitstream ν[n] ∈ {0, 1} which is constant on every [nTs, (n+ 1)Ts),
k ∈ N. This bitstream digitally encodes the input u (varying in a timescale of ε), and, with an adequate filter
K, u is estimated through ν ∗K.

Objective: Finding an estimate of the difference (u−ν)∗K as a function of the oversampling ratioN := ε/Ts.
Also, for an exogenous signal s , deducing an estimate for (u − ν)s ∗K.

Main result

Σ∆ ∗K
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− ◦ Σ∆: Sigma-Delta modulator

◦ K: convolution kernel

◦ s: exogenous signal

Theorem: Under some regularity assumptions on s and K, the filtered input filtered output difference I(t)
(see diagram above) satisfies

I(t) :=
∫ +∞
−∞
β(Nσ)s(σ)Kk(t − σ) dσ = o(1/N2)

More precisely: if s is differentiable and its derivative s ′ is absolutely continuous (resp. piecewise absolutely continuous), then s

is said to be AC1 (resp. piecewise AC1), and I(t) = o(1/N2) (resp. O(1/N2)).

Theoutline of theproof is twofold: first weprove that the input-output differenceβ has a zero-meanprimitive
β(−1), which has itself a zero-mean primitive β(−2); then we show that for this very specific type of function
β, based on a generalized Riemann-Lebesgue lemma, the estimate on I(t) holds.

Numerical results

Asymptotic behavior of the L2-norm ‖I‖2 of the error I(t) with respect to the oversampling ratio N for
various signals s (resp. piecewise AC1, AC1 and discontinuous signals).

Selected kernel: third-order B-spline K = ε−3 × 1[0,ε] ∗ 1[0,ε] ∗ 1[0,ε]
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Slope = approximation order: 1 (discontinuous), 2 (piecewise AC1), 2.3 (AC1)

What next?

◦Extension to various typologies of Σ∆modulator (MASH, CRFB, CIFB, etc.)

◦Generalization to nth-order CT-Σ∆modulator
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