FPGA Hardware Design for Plenoptic 3D Image Processing Algorithm Targeting a Mobile Application

Faraz Bhatti, Thomas Greiner Pforzheim University Pforzheim, Germany

2021 IEEE International Conference on Acoustics, Speech and Signal Processing 6-11 June 2021 Toronto, Canada

IEEE ICASSP

2021

HS PF

1.Introduction

- 2.Plenoptic camera system
- 3.Depth estimation algorithm
- 4.FPGA hardware design
- 5.Results
- 6.Conclusion

1. Introduction

Introduction

- Plenoptic camera for depth estimation
- Mobile application
 - Smart wheeled walker for elderly
 - Warns against potential dangerous situation
- A modified depth estimation algorithm is presented
 - Works directly on the raw image
 - Calculates depth from one frame
- General purpose processors
 - Slow because of the sequential nature
- Desktop GPU is not feasible for a mobile application
 - High energy consumption
- FPGA hardware solution is presented in this study
 - To optimize execution time
 - To meet energy requirements

2. Plenoptic Camera System

- Light field camera
 - Detection of different light beams
 - From same object / scene
- MLA (micro lens array)
 - Partial images of scene
 - Different perspectives
- Advantages:
 - ✓ Single recording sensor
 - ✓ Depth estimation
 - ✓ Rectified image
 - Refocusing after capturing the scene
 - ✓ Smaller occlusion areas

(a) Raw Image

(b) Focused Image

3. Depth Estimation Algorithm

- Virtual depth is calculated
 - Estimated distance ${\it b}_{\!\mu}$ related to B
 - $v = \frac{b_{\mu}}{B}$
- Virtual depth estimation is a multi-view stereo problem
- Pixel correspondences is calculated using Census Transform

4. FPGA Hardware Design

- Plenoptic-Module
 - Pre-Processing
 - Census-Transform
 - Best-Match Computation
- Connected with internal fast memory
 - Used as a buffer
 - Limited in size
- Processor is responsible:
 - Initialization
 - Configuration
 - Data movement

Pipelining

- Major performance bottleneck in the algorithm
 - Recursive operations to calculate depth
 - Searching for the best match of the reference pixel in neighborhood
- Number of micro-images for the matching is restricted by the baseline distance
 - Maximum baseline distance = $4.D_{\mu}$
- Concurrent selection of target micro-images

- After selecting target micro-image
 - Correspondence is searched within its physical boundaries
 - Micro-image is of a small size, e.g., diameter = 23 pixels
- Matching effort is reduced by limiting the search to the epipolar lines only
- Spatial parallelization is employed in the stereo-matching

5. Results

Results

- Indoor scenario: the camera is mounted on top of a wheeled walker
- Depth map computed by proposed algorithm is more dense than the RxLive

(c) RxLive Depth Map

(b) Focused Image

(d) Proposed Algorithm

©Faraz Bhatti

Results

- Utilization results are calculated from HLS
- Execution time is measured per frame
- *Combination* corresponds to pipelining and spatial parallelization
- *≈22.2x* faster

PC-System	Intel Core i7 processor
Mobile GPU	NVIDIA Jetson Xavier NX
FPGA MPSoC	Xilinx ZCU102

- FPGA:
 - ≈ 20% faster than mobile GPU
 - ≈ 69% faster than PC-System
 - Highest fps
 - Lowest power consumption

Table 1: Plenoptic algorithm utilization and execution time

	Utilization				FPGA Exec.
	LUTs	FFs	DSPs	BRAMs	time in ms
Pipelining	14845	19094	15	10	604.1
Combination	20900	25150	13	5	334.4
Final	29412	28769	272	1797	27.2

Table 2: PC-System, mobile GPU and FPGA implementation

	Exec. Time per frame	Throughput in fps	Power in watts
PC-System	88 ms	11	60
Mobile GPU	34 ms	29	13.5
FPGA MPSoC	27 ms	36	7.1

6. Conclusion

Conclusion

- This study presents a modified depth estimation algorithm
 - Works directly on the raw image
 - No intermediate processing is required
- The algorithm entails challenges
 - Consists of a large number of operations
 - Requires a substantial amount of resources
- General purpose processor based solution
 - Slow because of sequential execution
- Desktop GPU based solution is not feasible in a mobile application
 - Because of high energy consumption
- This study presents optimized FPGA based solution to improve the execution time
 - The design is realized and the respective results show that the proposed FPGA hardware is faster and energy efficient

Thank you for your time!

Faraz Bhatti M.Sc.

Pforzheim University Pforzehim Germany

Tiefenbronner Str. 65 75175 Pforzheim, Germany Phone +49 (0) 7231 - 28 - 6854

faraz.bhatti@hs-pforzheim.de

www.hs-pforzheim.de

