

Zero-Shot Audio Classification with Factored Linear and Nonlinear Acoustic-Semantic Projections

Huang Xie*, Okko Räsänen*⁺, Tuomas Virtanen* * Tampere University ⁺ Aalto University

Motivation

- Audio classification with supervised learning techniques:
 - ✓ Requires large amounts of annotated audio data from target classes.
 - Data collection and manual annotation are labor-intensive, time-consuming, and costly.
- Audio classification with limited audio data:
 - ✓ Employs methods such as data augmentation, meta learning, few-shot learning, etc.
 - A certain amount of representative audio data from target classes is still indispensable.
- Audio classification for novel classes:
 - ✓ Requires retraining supervised models.
 - time-consuming, exhaustive parameter tuning, etc.
- An extreme case \rightarrow no available audio data but only semantic information from target classes

Zero-Shot Audio Classification

- We tackle the extreme case with zero-shot learning techniques:
 - ✓ Define classes with their **semantic side information**, i.e., class textual labels.
 - ✓ Learn acoustic-semantic projections between audio data and textual labels from predefined training classes.
 - ✓ Transfer the learned projections to classify audio instances from target classes based on their labels.
 - \Rightarrow Target classes are **disjoint** from the predefined training classes.

Model-Agnostic Learning Framework

Bilinear Acoustic-Semantic Projection

- Given the acoustic embedding θ(x) of an audio instance x, the semantic embedding φ(y) of its reference class y, and φ(ŷ) of class ŷ.
- Denote the acoustic-semantic projection by *T*:

⇒ project $\theta(x)$ onto $\varphi(y)$ such that they are close to each other.

• A simple linear projection with a matrix *W*:

 $T\big(\theta(x)\big) = W'\theta(x)$

Factored Linear Acoustic-Semantic Projection

- Decompose *W* into a product of two low-rank matrices *U* and *V*.
 - \Rightarrow reduce the effective number of learned parameters.
- The factored linear projection:

$$T(\theta(x)) = V'U'\theta(x)$$

Nonlinear Acoustic-Semantic Projections

- Introduce nonlinear activations into factored linear projection.
 - \Rightarrow model possible nonlinearity between acoustic embeddings and semantic embeddings.
- The nonlinear projection with a nonlinear activation *t*:

 $T(\theta(x)) = V't(U'\theta(x))$

- \Rightarrow options of *t*: ReLU, sigmoid, tanh, etc.
- Introduce more projection matrices (e.g., *Q*) and nonlinear activations *t*:

 $T(\theta(x)) = V't(Qt(U'\theta(x)))$

Compatibility Function & Loss

• Choose the dot product as the compatibility function *F*:

$$F\left(T(\theta(x)),\varphi(y)\right) = T(\theta(x))'\varphi(y)$$

⇒ classify x into a class that has the maximum compatibility. ⇒ other options of F: cosine similarity, etc.

• Define hinge loss $l(x, y, \hat{y})$:

 $l(x, y, \hat{y}) = \max\left(0, \Delta(y, \hat{y}) + F\left(T(\theta(x)), \varphi(\hat{y})\right) - F\left(T(\theta(x)), \varphi(y)\right)\right)$

 $\Rightarrow \Delta(y, \hat{y}) = 0$ if $y = \hat{y}$ and 1 otherwise.

Embedding Modules

- VGGish:
 - \Rightarrow trained from scratch.
 - \Rightarrow extract 128-dimensional acoustic embeddings from audio clips.

- Pre-trained Word2Vec:
 - \Rightarrow generate 300-dimensional semantic embeddings by averaging word vectors in class textual labels.

Evaluation – Dataset

- An unbalanced subset from AudioSet:
 - ✓ 112,774 single-labeled audio clips.
 - $\checkmark\,$ 521 sound classes.
 - $\checkmark\,$ divided into 5 disjoint class folds:
 - \Rightarrow "Fold0" and "Fold1" for training VGGish.
 - \Rightarrow "Fold2", "Fold3", and "Fold4" for zero-shot classification.

Class Fold	Sound Class	Audio Clips
Fold0	104	23,007
Fold1	104	22,889
Fold2	104	22,762
Fold3	104	22,739
Fold4	105	21,377

Evaluation – Acoustic-Semantic Projections

- Acoustic-semantic projections:
 - ✓ Bilinear projection (baseline)
 - ✓ Factored linear projection
 - ✓ Nonlinear projections:
 - \Rightarrow two fully-connected layers with ReLU (FC2_{relu}), sigmoid (FC2_{sigmoid}), tanh activations (FC2_{tanh}).
 - \Rightarrow three fully-connected layers with tanh activations (FC3_{tanh}).
- To prevent randomness, each projection is evaluated twenty times with random initialization.

Evaluation – Results

- With $FC2_{sigmoid}$ and $FC2_{tanh}$,
 - \Rightarrow Capture nonlinearity between acoustic and semantic embeddings.
 - \Rightarrow Improve zero-shot performance.
- With FC3_{tanh},
 - \Rightarrow no explicit benefit with more parameters and nonlinear activations.

Acoustic-Semantic Projection		TOP-1 (%) avg ± std
Bilinear (baseline)		5.7 ± 1.1
Factored Linear		6.3 ± 0.8
Nonlinear	FC2 _{relu}	5.5 ± 0.9
	FC2 _{sigmoid}	$\textbf{7.0} \pm \textbf{0.5}$
	FC2 _{tanh}	$\textbf{7.2} \pm \textbf{0.6}$
	FC3 _{tanh}	6.0 ± 0.6

Conclusions

- We investigated acoustic-semantic projections for zero-shot learning in audio classification.
- \Rightarrow Factored linear projection is developed by applying matrix decomposition to a bilinear model.
- \Rightarrow Nonlinear activations are used to capture nonlinearity between acoustic and semantic embeddings.
- \Rightarrow A model-agnostic learning framework is used to study the effectiveness of acoustic-semantic projections.

