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Motivation

 Audio classification with supervised learning techniques:
v" Requires large amounts of annotated audio data from target classes.
B Data collection and manual annotation are labor-intensive, time-consuming, and costly.

 Audio classification with limited audio data:
v' Employs methods such as data augmentation, meta learning, few-shot learning, etc.

B A certain amount of representative audio data from target classes is still indispensable.

» Audio classification for novel classes:
v" Requires retraining supervised models.

B time-consuming, exhaustive parameter tuning, etc.

» An extreme case — no available audio data but only semantic information from target classes
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Zero-Shot Audio Classification

+ We tackle the extreme case with zero-shot learning techniques:

v" Define classes with their semantic side information, i.e., class textual labels.

v' Learn acoustic-semantic projections between audio data and textual labels from predefined training classes.

v Transfer the learned projections to classify audio instances from target classes based on their labels.

= Target classes are disjoint from the predefined training classes.

* The core idea is to model the relationships between audio data and semantic information, i.e., acoustic-semantic

projections. , -
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Model-Agnostic Learning Framework
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Bilinear Acoustic-Semantic Projection

« Given the acoustic embedding 6(x) of an audio instance x,
the semantic embedding ¢ (y) of its reference class y, and

@(y) of class j.

» Denote the acoustic-semantic projection by T

= project (x) onto ¢(y) such that they are close to each
other.

» A simple linear projection with a matrix W'
T(H(x)) =W'0(x)
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Factored Linear Acoustic-Semantic Projection

* Decompose W into a product of two low-rank matrices U
and V.

= reduce the effective number of learned parameters.

» The factored linear projection:

T(0(x)) =V'U'6(x)
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Nonlinear Acoustic-Semantic Projections

* Introduce nonlinear activations into factored linear projection.

= model possible nonlinearity between acoustic embeddings
and semantic embeddings.

» The nonlinear projection with a nonlinear activation t:
T(0(x)) =V't(U'0(x))

= options of t: ReLU, sigmoid, tanh, etc.
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Compatibility Function & Loss

* Choose the dot product as the compatibility function F:

!
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Embedding Modules

* VGGish:
= trained from scratch.
= extract 128-dimensional acoustic embeddings from audio clips.

* Pre-trained Word2Vec:
= generate 300-dimensional semantic embeddings by averaging word vectors in class textual labels.
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Evaluation — Dataset

* An unbalanced subset from AudioSet:
v 112,774 single-labeled audio clips.
v' 521 sound classes.
v' divided into 5 disjoint class folds:
= “Fold0” and “Fold1” for training VGGish.
= “Fold2”, “Fold3”, and “Fold4” for zero-shot classification.

Class Fold Sound Class Audio Clips

FoldO 104 23,007
Fold1 104 22,889
Fold2 104 22,762
Fold3 104 22,739

Fold4 105 21,377
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Evaluation — Acoustic-Semantic Projections

» Acoustic-semantic projections:
v' Bilinear projection (baseline)
v Factored linear projection
v Nonlinear projections:
= two fully-connected layers with ReLU (FC2,,,), sigmoid (FC2,,4), tanh activations (FC2,,).
= three fully-connected layers with tanh activations (FC3,,,)-

» To prevent randomness, each projection is evaluated twenty times with random initialization.
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Evaluation — Results

» With FC2,.,ig @and FC2
= Capture nonlinearity between acoustic and semantic embeddings.

tanh?

= Improve zero-shot performance.
« With FC3
= no explicit benefit with more parameters and nonlinear activations.

tanh?

- (1)
Acoustic-Semantic Projection Lot ()
avg + std

Bilinear (baseline) 57+ 1.1
Factored Linear 6.3+ 0.8

FC2., 5.5+ 0.9

FC2igmoid 7.0+ 0.5

Nonlinear

FC2.,m 7.2 + 0.6

FC3, 6.0 + 0.6
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Conclusions

« We investigated acoustic-semantic projections for zero-shot learning in audio classification.
= Factored linear projection is developed by applying matrix decomposition to a bilinear model.

= Nonlinear activations are used to capture nonlinearity between acoustic and semantic
embeddings.

= A model-agnostic learning framework is used to study the effectiveness of acoustic-semantic
projections.
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