Discriminatively Trained Joint Speaker and Environment Representations for Adaptation of Deep Neural Network Acoustic Models

Maofan Yin¹, Sunil Sivadas², Kai Yu¹, Bin Ma²

¹SpeechLab., Shanghai Jiao Tong University, China
²Human Language Technology Lab., Institute for Infocomm Research, Singapore

March 22, 2016

Introduction

- DNN: there have been tremendous advances in the accuracy of large vocabulary speech recognition systems
- The performance improvements are largely limited to clean and moderately noisy test conditions
- Solution: normalization of speaker and environment variability
 - ► fMLLR: feature-transform-based
 - ► CAT (Cluster Adaptive Training): structured-model-based
 - Multi-condition training: data-based
 - Augmentation the DNN input with auxiliary features (*)

Introduction

- Concatenate i-vector for a given speaker (IBM) / utterance (Google) to every frame
- Concatenate noise estimation for each utterance to every frame (Microsoft, Cambridge)

Introduction

- (*) Use the i-vector/noise-spectrum as a non-phonetic representation to augment input
- These coarse representations could be finer \implies "JSER"

An overview of the idea

- Derive a joint representation of speaker and environment that can be used to augment DNN input
- Use noisy i-vectors as input to train the DNN that estimates the Joint Speaker and Environment Representation (JSER)

S ITU & I2R

Why i-vectors?

- i-vector is a low-dimensional representation of the acoustic variability related to:
 - Speakers
 - Environment
 - Dialects

etc., rather than phonetic variability

The proposed model: MTL-MSE-JSER, MTL-CE-JSER, JTL-CE-JSER

Experiments: setup

- Experiments were conducted on corrupted WSJ databases
 - ▶ 84 speaker WSJ0 subset for training the acoustic model
 - WSJ0 + WSJ1 for training the Joint Speaker and Environment Representation (JSER) transforms
 - 8 different types of noise were added to the clean waveforms at different SNRs

Experiments: i-vector extraction

- Two different noise corrupted databases
 - i-vector extraction
 - 283 speakers
 - ▶ 8 noise types × 8 SNRs ⇒ 64 times the size of clean database
 - Acoustic model training (TBC)

SJTU & I2R

The JSER model. revisited

Experiments: JSER prediction accuracy

	Speaker		Environment	
Multi-Task Learning	Train	CV	Train	CV
MTL-MSE-JSER (60)	0.0501	0.0633	0.0931	0.1337
MTL-CE-JSER (60)	99.28	97.39	93.94	89.50
	$Spk. \times Env.$			
Joint-Task Learning	Train		CV	
JTL-CE-JSER (60)	93.02		80.62	

Table: Speaker and noise classification performance of JSER-DNNs. For MTL-MSE-JSER, the numbers are MSE values and for the rest they are classification accuracies in percentage. The number in brackets is the dimensionality of the bottleneck layer.

Experiments: acoustic model training

- Two different noise corrupted databases
 - i-vector extraction (done)
 - Acoustic model training
 - 84 speakers
 - (8 noise types + clean) at random SNRs
 - Multi-condition training set (the same size of clean set)

The acoustic model, revisited

Experiments: evaluation

- Experiments were conducted on a corrupted WSJ database
 - Evaluation set
 - Corrupted eval92, dev93, eval93 5k closed vocabulary test sets
 - The same 8 noise types at random SNRs
 - Trigram language model was used in decoding

Experiments: evaluation

	dev93	eval92	eval93
multi-condition	14.08	8.31	11.14
i-vector (25)	13.90	7.73	11.40
i-vector (100)	14.38	8.09	11.22
MTL-MSE-JSER (60)	13.72	8.07	11.06
MTL-CE-JSER (60)	13.34	8.37	9.89
JTL-CE-JSER (60)	15.36	9.47	11.89

Table: Word error rates for various speaker and environment representations. The number in brackets is the dimensionality of the representation.

Joint Speaker-Environment Representation Analysis

- MTL-MSE-JSER outperforms the 100-dimensional baseline and multi-condition baseline in all 3 test sets
- MTL-CE-JSER is even better on *dev93* and *eval93*
- MTL-CE-JSER has much better WERs on *dev93* and *eval93* than 25-dim i-vector ⇒ the best in terms of averaged WER:
 - MTL-CE-JSER: 10.53%
 - ▶ 25-dim baseline: 11.01%
- JTL-CE-JSER causes degradation on all test set

MTL training results, revisited

	Speaker		Environment	
Multi-Task Learning	Train	CV	Train	CV
MTL-MSE-JSER (60)	0.0501	0.0633	0.0931	0.1337
MTL-CE-JSER (60)	99.28	97.39	93.94	89.50
	$Spk. \times Env.$			
Joint-Task Learning	Train		CV	
JTL-CE-JSER (60)	93.02		80.62	

Table: Speaker and noise classification performance of JSER-DNNs. For MTL-MSE-JSER, the numbers are MSE values and for the rest they are classification accuracies in percentage. The number in brackets is the dimensionality of the bottleneck layer.

Conclusion

- Presented 3 novel methods for training discriminative joint speaker-environment representations from i-vectors
 - Investigated multi-task learning to learn the mapping from noisy utterance i-vectors to:
 - Clean speaker i-vectors and pure noise i-vectors (MSE)
 - Speaker labels and noise labels (CE)
 - Joint speaker-noise labels (CE)
- The representations are the activation of the linear bottleneck layer
- Appending representations at the input of acoustic model
 promising (except JTL-CE-JSER)

Future work

- Explore additional auxiliary tasks
- Application to noise robust speaker verification
- Address the issue: in some settings, the frame accuracy has a huge gain, but it does not translate into WER (... may try an end-to-end NN?)

Thank you! Q & A

Why i-vectors?

Given a Gaussian Mixture Model (GMM), the corresponding speaker-specific mean super-vector M(s), for speaker s, can be approximated as:

$$M(s) = m + Tw(s)$$

- m is the mean super-vector from the GMM-UBM
- T is the low-rank total variability matrix
- w(s) is the low-dimensional i-vector for speaker s

Experiments: setup

Experiments were conducted on a corrupted WSJ database

- ▶ 84 speaker WSJ0 subset for training the acoustic model
- WSJ0 + WSJ1 for training the Joint Speaker and Environment Representation (JSER) transforms
- 8 different types of noise were added to the clean waveforms at different SNRs
 - Restaurant, street, supermarket, food-court, living room, mall, taxi and gym
 - Noise recording was about half an hour long
 - Mixed with a random noise segment equal to the duration of the waveform

Experiments: i-vector extraction

- Two different noise corrupted databases
 - i-vector extraction
 - 283 speakers
 - 8 different SNRs: 5dB to 20dB in steps of 2dB
 - ▶ 8 noise types × 8 SNRs ⇒ 64 times the size of clean database
 - Pure noise i-vectors: long noise recordings randomly segmented into many 20-second chunks and MFCC features were extracted
 - For each utterance $i: \{w(i), w(s_i), w(n_i)\}$ and $\{w(i), s_i, n_i\}$.
 - Acoustic model training (TBC)

Experiments: acoustic model training

- Two different noise corrupted databases
 - i-vector extraction (done)
 - Acoustic model training
 - ▶ 84 speakers
 - (8 noise types + clean) at random SNRs between 10dB and 20dB
 - Multi-condition training set (the same scale of clean set)
 - ► 13 MFCC, ∆ and ∆∆ features normalized by mean and variance over the utterance
 - 11 frames of temporal context
 - Tied-state labels are from MMI trained GMM-HMM

Experiments: evaluation

- Experiments were conducted on a corrupted WSJ database
 - Evaluation set
 - Corrupted eval92, dev93, eval93 5k closed vocabulary test sets
 - The same 8 noise types at random SNR from 5 dB to 20 dB
 - Trigram language model was used in decoding

Analysis

- Utterance-level i-vector adaptation instead of speaker-level adaptation
- 25-dimensional i-vector setting is better than 100-dimensional one