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Joint Speaker-Environment Representation

Introduction

» DNN: there have been tremendous advances in the accuracy
of large vocabulary speech recognition systems

» The performance improvements are largely limited to clean
and moderately noisy test conditions

» Solution: normalization of speaker and environment variability

v

fMLLR: feature-transform-based
CAT (Cluster Adaptive Training): structured-model-based

v

v

Multi-condition training: data-based

» Augmentation the DNN input with auxiliary features (*)
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Joint Speaker-Environment Representation

Introduction

» Concatenate i-vector for a given speaker (IBM) / utterance
(Google) to every frame

» Concatenate noise estimation for each utterance to every

frame (Microsoft, Cambridge)

CD State posterior outputs

Hidden layers Outputs

Inputs

Stacked acoustic features i-vector
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Joint Speaker-Environment Representation

Introduction

> (*) Use the i-vector/noise-spectrum as a non-phonetic
representation to augment input

» These coarse representations could be finer = "JSER”
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Joint Speaker-Environment Representation

An overview of the idea

» Derive a joint representation of speaker and environment that
can be used to augment DNN input

» Use noisy i-vectors as input to train the DNN that estimates
the Joint Speaker and Environment Representation

(JSER)

SJTU & I2R
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Joint Speaker-Environment Representation

Why i-vectors?

» i-vector is a low-dimensional representation of the acoustic
variability related to:
» Speakers
» Environment

» Dialects

etc., rather than phonetic variability
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Joint Speaker-Environment Representation

The proposed model: MTL-MSE-JSER, MTL-CE-JSER, JTL-CE-JSER

clean
speaker
i-vector

noise only
i-vector

/- ~\
1024 nodes
\ /

. 768nodes
N e

low dimensional ™.
manifoldlayer : j

768 nodes \

! 1024 nudes//!

noisy utterance i-vector

(a)

M. Yin, S. Sivadas, K. Yu, B. Ma

speaker

; N
| .\
]

noise

label label

. =

<

1024 nodes

. 768nodes
v

low dimensional ™

manifold layer : :

! 1024 nodes /!

noisy utterance i-vector

768 nodes

(b)

JSER

\ /
AN

/

joint speaker &

noise label
==

1024 nodes

\ /
. 768nodes >
N S

low dimens

ional ™
manifold layer :::

| 768nodes

: 1024 nodes//!

noisy utterance i-vector
(c)

SJTU & I2R

7/ 26



Joint Speaker-Environment Representation

Experiments: setup

» Experiments were conducted on corrupted WSJ databases
» 84 speaker WSJ0 subset for training the acoustic model
» WSJ0O + WSJ1 for training the Joint Speaker and
Environment Representation (JSER) transforms
» 8 different types of noise were added to the clean waveforms at
different SNRs
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Joint Speaker-Environment Representation

Experiments: i-vector extraction

» Two different noise corrupted databases
> i-vector extraction

> 283 speakers
> 8 noise types X 8 SNRs = 64 times the size of clean

database

» Acoustic model training (TBC)
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Joint Speaker-Environment Representation

The JSER model, revisited
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Joint Speaker-Environment Representation

Experiments: JSER prediction accuracy

Speaker Environment
Multi-Task Learning Train cv Train cv
MTL-MSE-JSER (60) | 0.0501 | 0.0633 | 0.0931 | 0.1337
MTL-CE-JSER (60) 99.28 | 97.39 | 93.94 | 89.50

Spk. x Env.
Joint-Task Learning Train cv
JTL-CE-JSER (60) 93.02 80.62

Table: Speaker and noise classification performance of JSER-DNNs. For
MTL-MSE-JSER, the numbers are MSE values and for the rest they are
classification accuracies in percentage. The number in brackets is the

dimensionality of the bottleneck layer.
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Joint Speaker-Environment Representation

Experiments: acoustic model training

» Two different noise corrupted databases
» i-vector extraction (done)
» Acoustic model training
> 84 speakers
> (8 noise types + clean) at random SNRs

» Multi-condition training set (the same size of clean set)
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Joint Speaker-Environment Representation

The acoustic model, revisited
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Joint Speaker-Environment Representation

Experiments: evaluation

» Experiments were conducted on a corrupted WSJ database
» Evaluation set

> Corrupted eval92, dev93, eval93 5k closed vocabulary test sets
> The same 8 noise types at random SNRs

» Trigram language model was used in decoding
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Joint Speaker-Environment Representation

Experiments: evaluation

| | devo3 | eval92 | eval93

] multi-condition \ 14.08 \ 8.31 \ 11.14 \
i-vector (25) 13.90 | 7.73 | 11.40
i-vector (100) 1438 | 809 | 11.22

MTL-MSE-JSER (60) | 13.72 | 8.07 | 11.06
MTL-CE-JSER (60) | 13.34 | 837 | 9.89
JTL-CE-JSER (60) | 1536 | 9.47 | 11.89

Table: Word error rates for various speaker and environment
representations. The number in brackets is the dimensionality of the

representation.
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Joint Speaker-Environment Representation

Analysis

» MTL-MSE-JSER outperforms the 100-dimensional baseline

and multi-condition baseline in all 3 test sets

» MTL-CE-JSER is even better on dev93 and eval93

» MTL-CE-JSER has much better WERs on dev93 and eval93
than 25-dim i-vector = the best in terms of averaged
WER:

» MTL-CE-JSER: 10.53%
» 25-dim baseline: 11.01%

v

JTL-CE-JSER causes degradation on all test set
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Joint Speaker-Environment Representation

MTL training results, revisited

Speaker Environment
Multi-Task Learning Train cv Train cv
MTL-MSE-JSER (60) | 0.0501 | 0.0633 | 0.0931 | 0.1337
MTL-CE-JSER (60) 99.28 | 97.39 | 93.94 | 89.50

Spk. x Env.
Joint-Task Learning Train cv
JTL-CE-JSER (60) 93.02 80.62

Table: Speaker and noise classification performance of JSER-DNNs. For
MTL-MSE-JSER, the numbers are MSE values and for the rest they are
classification accuracies in percentage. The number in brackets is the

dimensionality of the bottleneck layer.
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Joint Speaker-Environment Representation

Conclusion

> Presented 3 novel methods for training discriminative joint
speaker-environment representations from i-vectors

> Investigated multi-task learning to learn the mapping from
noisy utterance i-vectors to:

» Clean speaker i-vectors and pure noise i-vectors (MSE)
> Speaker labels and noise labels (CE)

> Joint speaker-noise labels (CE)
» The representations are the activation of the linear bottleneck
layer

» Appending representations at the input of acoustic model

— promising (except JTL-CE-JSER)
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Joint Speaker-Environment Representation

Future work

» Explore additional auxiliary tasks
» Application to noise robust speaker verification

» Address the issue: in some settings, the frame accuracy has a
huge gain, but it does not translate into WER (... may try an
end-to-end NN?)
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Joint Speaker-Environment Representation

Why i-vectors?

v

Given a Gaussian Mixture Model (GMM), the corresponding
speaker-specific mean super-vector M (s), for speaker s, can

be approximated as:
M(s) = m+ Tw(s)

» m is the mean super-vector from the GMM-UBM

v

T is the low-rank total variability matrix

» w(s) is the low-dimensional i-vector for speaker s
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Joint Speaker-Environment Representation

Experiments: setup

» Experiments were conducted on a corrupted WSJ database

> 84 speaker WSJ0 subset for training the acoustic model
» WSJ0O + WSJ1 for training the Joint Speaker and
Environment Representation (JSER) transforms
» 8 different types of noise were added to the clean waveforms at
different SNRs
> Restaurant, street, supermarket, food-court, living room, mall,
taxi and gym
> Noise recording was about half an hour long
» Mixed with a random noise segment equal to the duration of

the waveform
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Joint Speaker-

Environment Representation

Experiments: i-vector extraction

» Two different noise corrupted databases

» i-vector extraction

>

>

>

>

283 speakers

8 different SNRs: 5dB to 20dB in steps of 2dB

8 noise types x 8 SNRs = 64 times the size of clean
database

Pure noise i-vectors: long noise recordings randomly
segmented into many 20-second chunks and MFCC features
were extracted

For each utterance i: {w(i), w(s:), w(n;)} and {w(%), s;, ni}.

» Acoustic model training (TBC)
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Joint Speaker-

Environment Representation

Experiments: acoustic model training

» Two different noise corrupted databases

» i-vector extraction (done)

» Acoustic model training

>

>

84 speakers

(8 noise types + clean) at random SNRs between 10dB and
20dB

Multi-condition training set (the same scale of clean set)

13 MFCC, A and AA features normalized by mean and
variance over the utterance

11 frames of temporal context

Tied-state labels are from MMI trained GMM-HMM
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Joint Speaker-Environment Representation

Experiments: evaluation

» Experiments were conducted on a corrupted WSJ database
» Evaluation set

> Corrupted eval92, dev93, eval93 5k closed vocabulary test sets
> The same 8 noise types at random SNR from 5 dB to 20 dB

» Trigram language model was used in decoding
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Joint Speaker-Environment Representation

Analysis

» Utterance-level i-vector adaptation instead of speaker-level
adaptation
» 25-dimensional i-vector setting is better than 100-dimensional

one

M. Yin, S. Sivadas, K. Yu, B. Ma SJTU & I2R 26 / 26



	Introduction
	The JSER Model
	Experiments
	Analysis
	Conclusion
	Future Work

