Contrastive Separative Coding for Self-supervised Representation Learning

Introduction

Existing contrastive learning approaches predict the neighboring, missing, or future samples, etc.

The realistic scenarios, however, have corrupted signals in various interfering conditions; traditionally requiring complicated pipelines to tackle the interference and overlapping segments.

Comparison of SV performances between our proposed method and conventional methods:

Jun Wang, Max W.Y. Lam, Dan Su, Dong Yu

joinerwang@tencent.com, Tencent AI Lab

Bottom-up cross attention:

• Bottom-up queries from the corrupted signal to retrieve the most relevant representation for the speaker and filter out non-salient, noisy, or redundant parts

$$\mathbf{a}_{i,j} = \operatorname{softmax}(\operatorname{Query}(\mathbf{X}_i)^\top \cdot \operatorname{Key}(\mathbf{Y}_j)).$$
 (1)

$$\mathbf{Z}_{i} = \frac{1}{S_{i}} \sum_{S_{i}} \sum_{S_{j}} \mathbf{a}_{i,j} \cdot \text{Value}(\mathbf{Y}_{j})^{\top}.$$
 (2)

Contrastive Separative Coding (CSC) loss:

• **CSC** loss \mathcal{L}_{CSC} serves as an upper bound of the negative mutual information (MI), therefore minimizing the **CSC** loss results in maximizing the MI between a global speaker vector and a separative embedding

$$\mathcal{L}_{\text{CSC}} = -\mathbb{E}_{\mathcal{D}} \left[\log \left(f(\mathbf{Z}^{(n_c)}, \mathbf{E}^{(n_c)}) / \sum_{n=1}^{N} f(\mathbf{Z}^{(n_c)}, \mathbf{E}^{(n)}) \right) \right],$$
(3)

Relation to Prior Art

• Applying the proposed $f(\mathbf{Z}, \mathbf{E})$ corresponds to treating each global speaker vector \mathbf{E} as a cluster centroid (Gaussian mean) of different separative embedding vectors \mathbf{Z} with a learnable parameter $\alpha > 0$ controlling the cluster size (Gaussian variance)

• With our proposed form of $f(\mathbf{Z}, \mathbf{E})$ minimizing \mathcal{L}_{CSC} results in minimizing the distance between the separative embedding \mathbf{Z} and the corresponding global speaker vector \mathbf{E} meanwhile maximizing the distance between other global speaker vectors • CSC loss is a rescaled L-2 normalization of

InfoNCE loss proposed in \mathbf{CPC} .

- Baselines: 1) a conventional speaker-vector-based SV system (**SincNet**), 2): ablation by replacing **CSC** with **CE**
- Conditions: mixture ("[]_mix"), enhanced data by a SS pre-processing ("[]_enh"), and clean data ("[]_clean")
- Results: Ours significantly outperforms the baselines, particularly, ours in complex interfering conditions is approaching the performance by conventional **SincNet** in a clean condition.

Conclusion

• The proposed **CSC** loss is proved to have in-depth theoretical relations with \mathbf{MI} and CPC

• The learned representation can achieve high performances even in very complex conditions

• An interpretable bottom-up cross attention mechanism is shown effective in extracting representations across different observations in various interfering conditions, interestingly similar to an auditory selective attention, to be explored on speaker diarization.