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Introduction

Existing contrastive learning approaches predict
the neighboring, missing, or future samples, etc.
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The realistic scenarios, however, have corrupted
signals in various interfering conditions; tradition-
ally requiring complicated pipelines to tackle the
interference and overlapping segments.
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Comparison of SV performances between our
proposed method and conventional methods:
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= CSC_mix(AUC:0.984,EER:0.053)
041 —— CE_mix(AUC:0.941,EER:0.121)
—— CE_enh(AUC:0.971,EER:0.072)
0.2 - —— SincNet_mix(AUC:0.865,EER:0.216)
—— SincNet enh(AUC:0.965,EER:0.082)
0.0 - —— SincNet_clean(AUC:0.992,EER:0.027)
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Contrastive Separative Coding
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Proposed Method

Bottom-up cross attention:

e Bottom-up queries from the corrupted signal to
retrieve the most relevant representation for the
speaker and filter out non-salient, noisy, or
redundant parts

a; i = softmax(Query(X;) ' - Key(Y;)). (1)

1
Z; = S Srai Value(Y;) ' (2)

Contrastive Separative Coding (CSC) loss:

e CSC loss Lcge serves as an upper bound of the
negative mutual information (MI), therefore
minimizing the CSC loss results in maximizing
the MI between a global speaker vector and a
separative embedding

—Ep llog [£(Z), B™)/ ¥ p(z) B))
3)

Logo =

Xe, | Xepv1 | Xey42 | | Xe,—1 | X, | Xej+1] | Xep—2 | Xeg-1 | Xep | Xeg+1 |

® O
Speaker: A B

f(Z") E™) = exp[—al| 2™ — EM|F],  (4)

Relation to Prior Art

o Applying the proposed f(Z,E) corresponds to
treating each global speaker vector E as a
cluster centroid (Gaussian mean) of different
separative embedding vectors Z with a learnable
parameter v > 0 controlling the cluster size
(Gaussian variance)

o With our proposed form of f(Z,E) minimizing
Lcsc results in minimizing the distance between
the separative embedding Z and the
corresponding global speaker vector E
meanwhile maximizing the distance between
other global speaker vectors

e CSC loss is a rescaled L-2 normalization of
InfoNCE loss proposed in CPC.
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Result

e Baselines: 1) a conventional
speaker-vector-based SV system (SincNet), 2):
ablation by replacing CSC with CE

e Conditions: mixture (“| | _mix”), enhanced data
by a SS pre-processing (“| | _enh”), and clean
data (“| | clean”)

e Results: Ours significantly outperforms the
baselines, particularly, ours in complex
interfering conditions is approaching the
performance by conventional SincNet in a
clean condition.

e The proposed CSC loss is proved to have
in-depth theoretical relations with MI and
CPC

e The learned representation can achieve high
performances even in very complex conditions

e An interpretable bottom-up cross attention
mechanism is shown effective in extracting
representations across different observations

in various interfering conditions, interestingly

similar to an auditory selective attention, to

be explored on speaker diarization.



