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Background and Motivation Qs

. . Prior contrastive approaches:
Prior hypothesis: PP
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The realistic scenarios, however:
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Contrastive Predictive Coding (CPC) Contrastive Separative Coding (CSC)
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Bottom-up cross attention:
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CSC Loss:

F N
Lesc = —Ep |log (f(z{ﬂE];E(ﬂEj)fZ f[Z(“E:I, E{ﬂl))
L n=1

(3)
F(Z7) E™) = exp (_&.HZ(H:J _ H%) | (4)

« CSCloss L¢gc serves as an upper bound of the
negative mutual information (Ml)

« Minimizing the CSC loss L¢g¢ results in maximizing
the M| between a global speaker vector and a

separative embedding

Note: Please see the article for the detailed assumptions and proof for the claims here.

« Applying the proposed f(Z,E) to Lcgc corresponds

to treating each global speaker vector E as a

cluster

centroid (Gaussian mean) of different separative

embedding vectors Z with a learnable parameter a >

0 controlling the cluster size (Gaussian variance)

« With our proposed form of f(Z, E), minimizing L¢sc

results In minimizing the distance between t

ne

separative embedding Z and the corresponc

global speaker vector E meanwhile maximiz

INg
ing the

distance between other global speaker vectors

« CSClossis arescaled L-2 normalization of /nfoNCE

loss proposed in CPC.
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Cross-attention: interpretable mechanism, and improved transparency
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Ref. system 1: a conventional speaker-vector-based neural 1.0 -
network (SincNet)
Ref. system 2: ablated the proposed method by removing the e
Jdare and g models from the graph and replacing the .
proposed loss with a Cross-Entropy loss (CE) o
Metrics: Equal Error Rate (EER) and Area Under Curve (AUC) on ) 0.4 -
the SV task
Conditions: “[I_mix" , “[]_enh” ,and “[]_clean” :training 0.2 -
and test on mixture data, enhanced data by a SOTA SS pre-

0.0 A

orocessing, and clean data

Results: Our proposed system’ s performance significantly

surpass all reference models’ , particularly, which in complex

interfering conditions is approaching the performance by

conventional Ref. 1 in a clean condition.

CSC mix(AUC:0.984,EER:0.053)
CE_mix(AUC:0.941,EER:0.121)
CE_enh(AUC:0.971,EER:0.072)
SincNet mix(AUC:0.865,EER:0.2106)
SincNet enh(AUC:0.965,EER:0.082)
SincNet clean(AUC:0.992,EER:0.027)

0.0

0.2 0.4 0.6 0.8 1.0
FPR




Conclusions ¢ foncent

* A novel Contrastive Separative Coding (CSC) method is proposed to draw useful representations
from complex interfered signals;

» The proposed CSC loss is proved to have in-depth theoretical relations with the mutual information
estimation and maximization, as well as prior contrastive learning methods;

» The learned representation have strong discriminability that its complex-condition performance is
even approaching the clean-condition performance of a conventional SV system;

 An interpretable bottom-up cross attention mechanism is shown effective in extracting the global
aggregation of information across different corrupted observations in various interfering conditions,
which is interestingly similar to a human’ s auditory selective attention, and to be explored on

speaker diarization in our future work.
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