

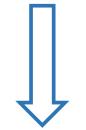
Contrastive Separative Coding for Self-supervised Representation Learning

Jun Wang, Max W. Y. Lam, Dan Su, Dong Yu IEEE ICASSP 2021, 2021-04-22

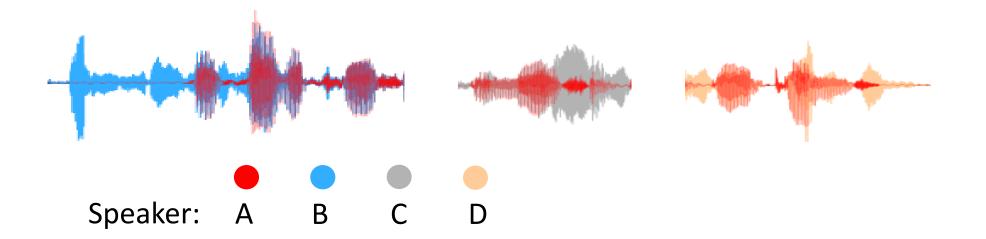
Background and Motivation

Prior hypothesis:

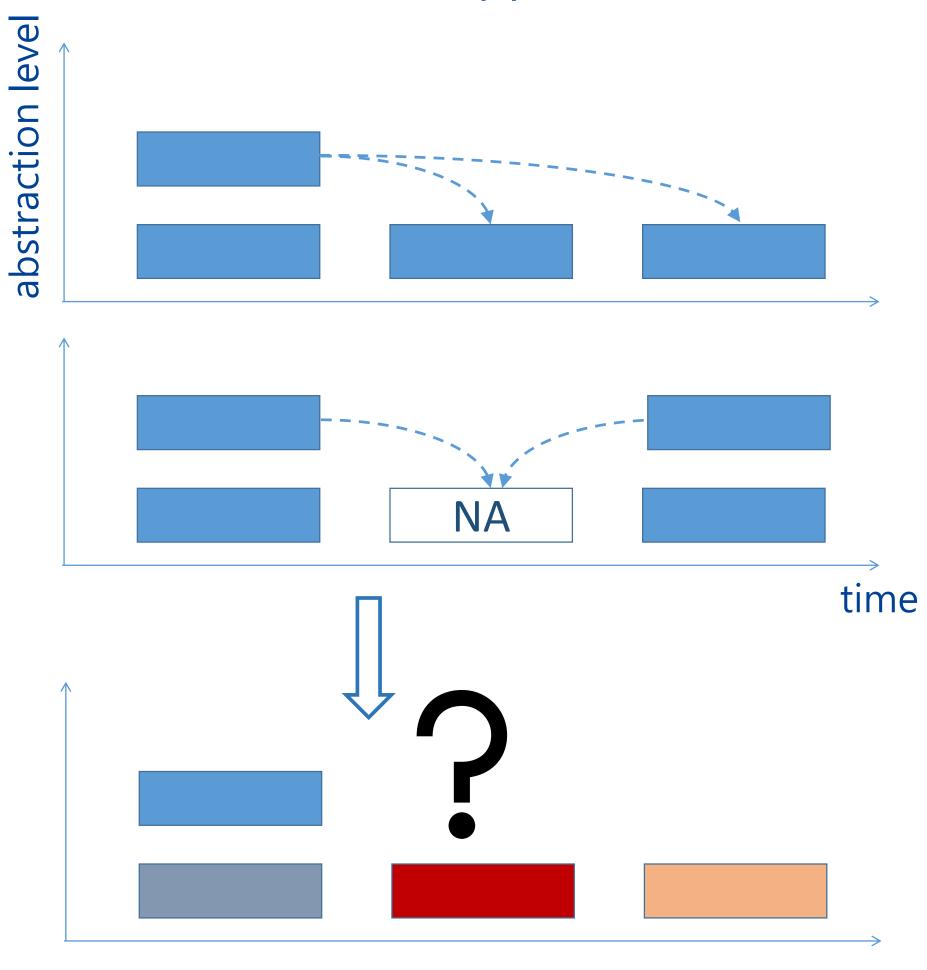
... predicting the future, neighboring, or missing samples, etc.



The realistic scenarios, however:



Prior contrastive approaches:



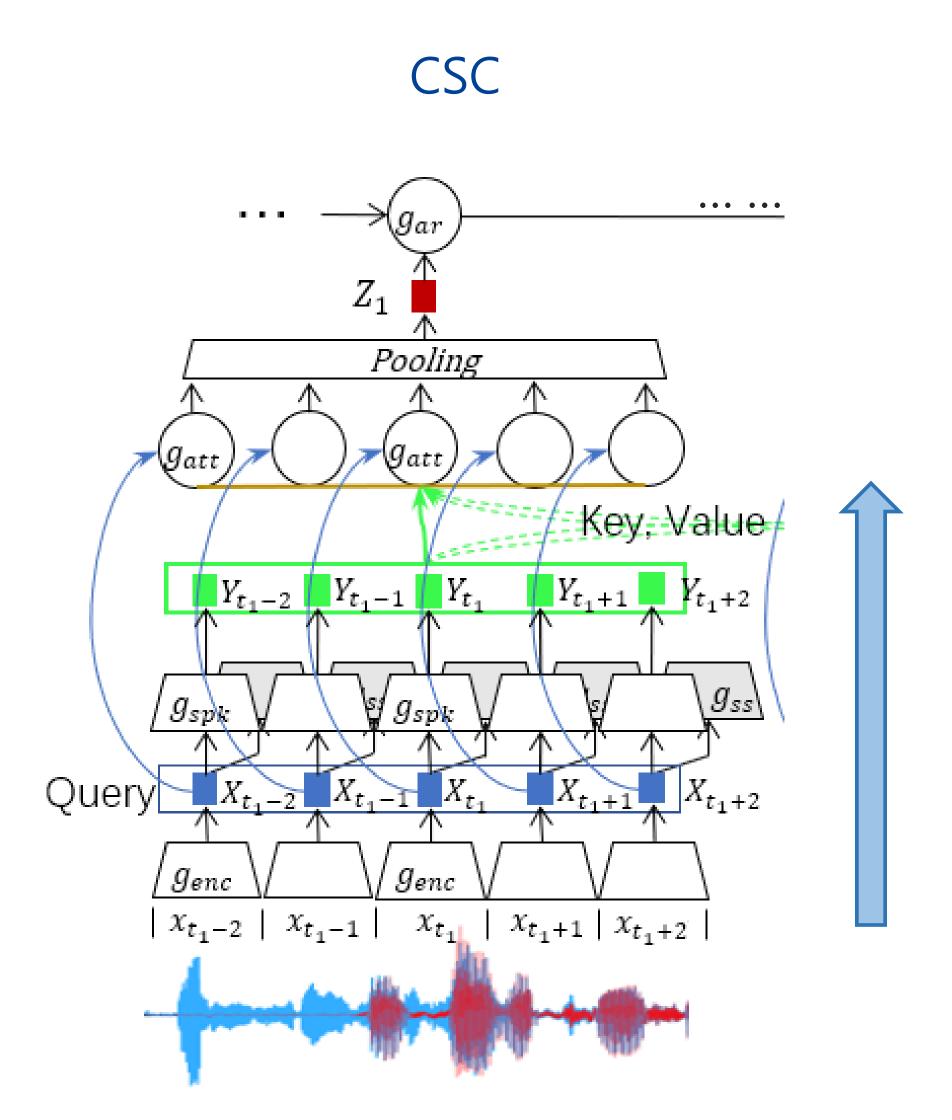
Contrastive Separative Coding

Contrastive Predictive Coding (CPC)

Contrastive Separative Coding (CSC)



Contrastive Separative Coding



Bottom-up cross attention:

$$\mathbf{a}_{i,j} = \operatorname{softmax}(\operatorname{Query}(\mathbf{X}_i)^{\top} \cdot \operatorname{Key}(\mathbf{Y}_j)). \tag{1}$$

$$\mathbf{Z}_{i} = \frac{1}{S_{i}} \sum_{S_{i}} \sum_{S_{j}} \mathbf{a}_{i,j} \cdot \text{Value}(\mathbf{Y}_{j})^{\top}. \tag{2}$$

Contrastive Separative Coding

CSC Loss:

$$\mathcal{L}_{CSC} = -\mathbb{E}_{\mathcal{D}} \left[\log \left(f(\mathbf{Z}^{(n_c)}, \mathbf{E}^{(n_c)}) / \sum_{n=1}^{N} f(\mathbf{Z}^{(n_c)}, \mathbf{E}^{(n)}) \right) \right],$$

$$(3)$$

$$f(\mathbf{Z}^{(n_c)}, \mathbf{E}^{(n)}) = \exp \left(-\alpha \|\mathbf{Z}^{(n_c)} - \mathbf{E}^{(n)}\|_2^2 \right),$$

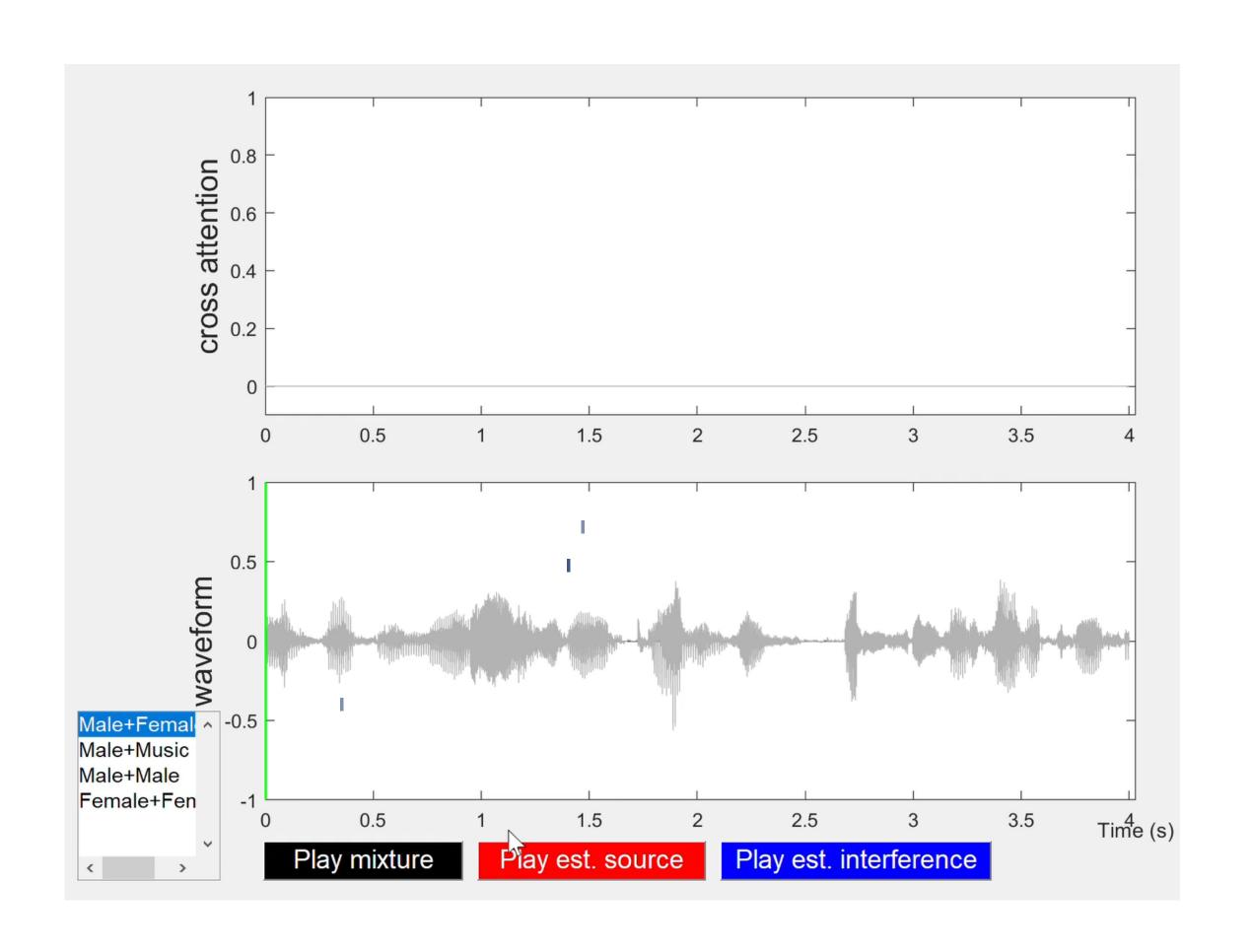
$$(4)$$

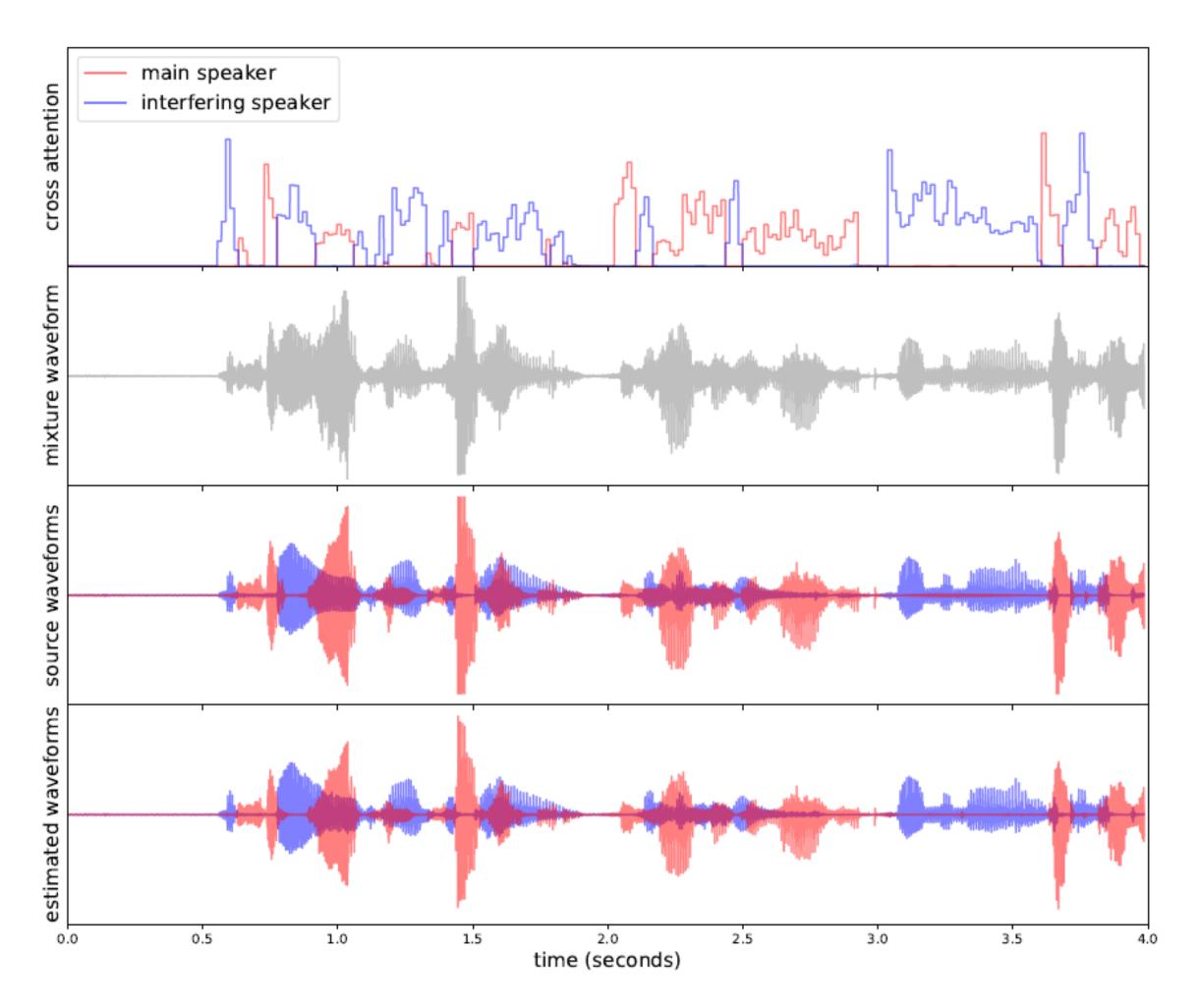
- CSC loss \mathcal{L}_{CSC} serves as an upper bound of the negative mutual information (MI)
- Minimizing the CSC loss \mathcal{L}_{CSC} results in maximizing the MI between a global speaker vector and a separative embedding

- Applying the proposed $f(\mathbf{Z}, \mathbf{E})$ to $\mathcal{L}_{\mathrm{CSC}}$ corresponds to treating each global speaker vector \mathbf{E} as a cluster centroid (Gaussian mean) of different separative embedding vectors \mathbf{Z} with a learnable parameter $\alpha > 0$ controlling the cluster size (Gaussian variance)
- With our proposed form of $f(\mathbf{Z}, \mathbf{E})$, minimizing \mathcal{L}_{CSC} results in minimizing the distance between the separative embedding \mathbf{Z} and the corresponding global speaker vector \mathbf{E} meanwhile maximizing the distance between other global speaker vectors
- CSC loss is a rescaled L-2 normalization of *InfoNCE* loss proposed in CPC.

Experiments

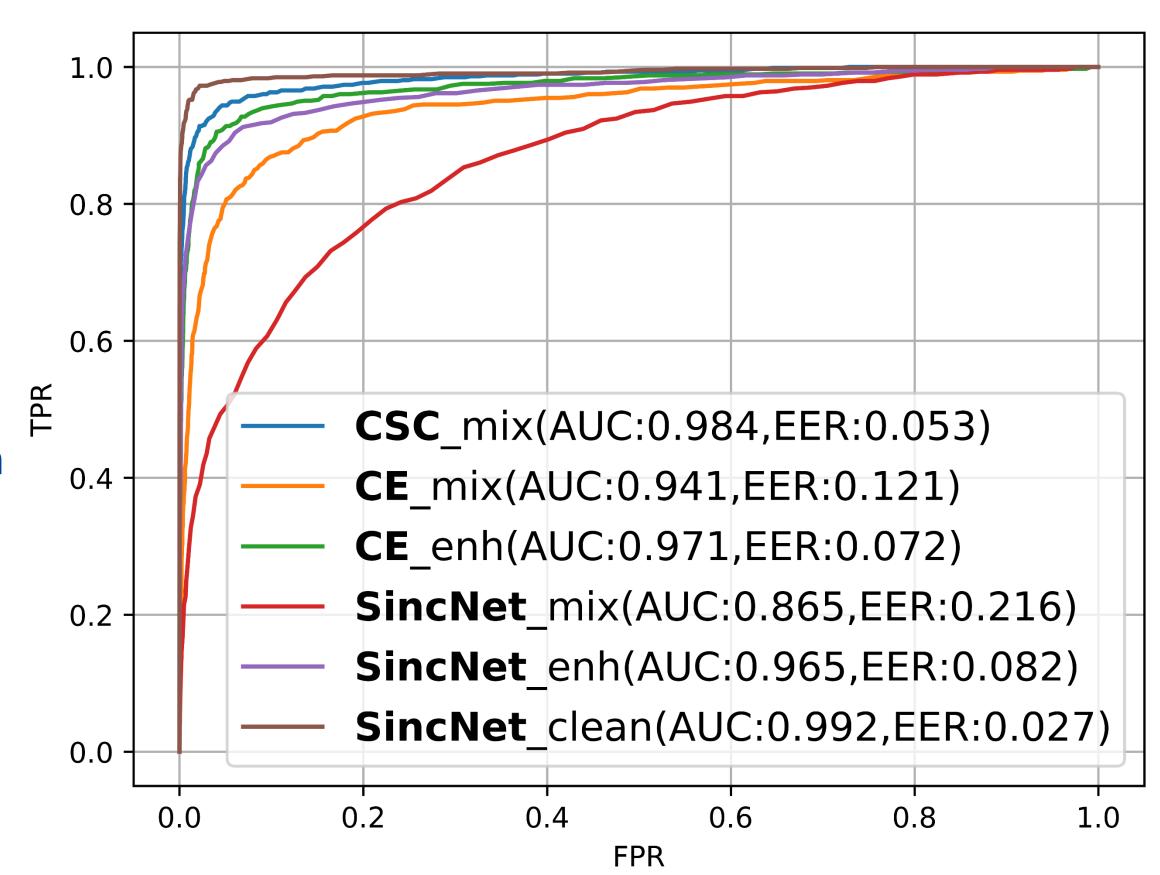
Cross-attention: interpretable mechanism, and improved transparency





Experiments

- Ref. system 1: a conventional speaker-vector-based neural network (SincNet)
- Ref. system 2: ablated the proposed method by removing the $g_{\rm att}$ and $g_{\rm ss}$ models from the graph and replacing the proposed loss with a Cross-Entropy loss (CE)
- <u>Metrics</u>: Equal Error Rate (EER) and Area Under Curve (AUC) on the SV task
- <u>Conditions</u>: "[]_mix", "[]_enh", and "[]_clean": training and test on mixture data, enhanced data by a SOTA SS preprocessing, and clean data
- Results: Our proposed system's performance significantly surpass all reference models', particularly, which in complex interfering conditions is approaching the performance by conventional Ref. 1 in a clean condition.



Conclusions

- A novel Contrastive Separative Coding (CSC) method is proposed to draw useful representations from complex interfered signals;
- The proposed CSC loss is proved to have in-depth theoretical relations with the mutual information estimation and maximization, as well as prior contrastive learning methods;
- The learned representation have strong discriminability that its complex-condition performance is even approaching the clean-condition performance of a conventional SV system;
- An interpretable bottom-up cross attention mechanism is shown effective in extracting the global aggregation of information across different corrupted observations in various interfering conditions, which is interestingly similar to a human's auditory selective attention, and to be explored on speaker diarization in our future work.

THANKYOU