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1. Introduction



Continuous Wave Time-of-Flight Imaging



Pulsed Time-of-Flight Imaging



2. Why ToF Super-resolution?



• ToF cameras do not match the resolution of conventional 
cameras. Reasons:
– Active operation at a single wavelength massively restricts the 

collected optical power.
– Endowing the pixels with demodulation capabilities reduces the 

overall pixel efficiency due to additional losses.
– As frequency increases, demodulation contrast decreases.
– For these reasons, larger photosensitive areas are required.
– ToF pixels require in-pixel circuitry. This increases the pixel size 

and reduces the fill factor.
– Result: arrays of lower resolution for the same chip area.

The resolution problem



The resolution problem
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The resolution problem
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The resolution problem
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The resolution problem

RGB image from a ZESS 
MultiCam (Aptina, 3MPix)

Depth image from a ZESS MultiCam
(PMD PhotonICs 19k-S3)

• A ZESS MultiCam was used to simultaneously deliver registered 
RGB and depth images of the same scene, but…

• The resolution gap makes data fusion challenging.



3. Methods for ToF
Super-resolution



• Existing literature on ToF super-resolution (SR) 
can be classified in three groups:
a) Resolution transfer approaches
b) Single-frame SR approaches
c) Multiple-frame SR approaches

How to close the resolution gap?

Low Resolution (LR) Depth Image

High Resolution (HR) Depth Image

SR



• Resolution Transfer:
– Another modality of higher-resolution is required, 

typically an RGB image
– Perfect registration is needed
– Existing methods are based on:

• Bilateral filters
• Markov Random Fields (MRF) 
• Neural networks

Resolution
Transfer

HR RGB 
Image

LR Depth 
Image

HR Depth 
Image

How to close the resolution gap?



• Single-frame Super-resolution:
– It does not require another modality
– Existing methods are based on:

• Interpolation (bilinear, biquadratic, bicubic, etc.)
• Deconvolution. Challenges:

– Typically blind
– Depth- (3D) dependent blur kernel  → No (3D) shift invariance
– Ill-posed problem → Regularizers needed

• Neural networks

Single-
Frame SRParameters LR Depth 

Image
HR Depth 

Image

How to close the resolution gap?



• Multiple-frame Super-resolution:
– Leverages motion between camera and scene
– LR depth images acquired from slightly different 

viewpoints are used to generate a HR depth image
– Main weakness: motion is supposed to occur 

between frames but not within each frame!

Multi-
Frame SR
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• Intra-frame motion has so-far been ignored in ToF SR.
• In practice, if motion exists, it will be both inter-frame and 

intra frame. → Existing multi-frame SR will then fail.
• Existing approaches rely on the underlying hypothesis 

that depth images are “acquired” within a negligible time 
window: 
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• In reality, amplitude and depth images are generated 
from sets or raw images, acquired sequentially.

• For a CW-ToF camera acquiring three phases at three 
different frequencies, such as the Kinect v2:
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4. Intra-frame ToF Super-
resolution from Raw Data



• We adopt a unifying perspective and aim to attain SR 
from raw images.

• Considering raw images from successive frames, our 
framework naturally contemplates both inter-frame and 
intra-frame SR.

• In this work, we focus on CW-ToF, but the pipeline is 
valid for pulsed ToF too.

• In CW-ToF each pixel acquires measurements of the 
shape:

𝑚𝑚 𝑖𝑖, 𝑗𝑗 = 𝐴𝐴 1 + cos 2𝜋𝜋𝑓𝑓𝑖𝑖 𝑡𝑡 − 𝑡𝑡0 + 𝜃𝜃𝑗𝑗



• Most ToF (e.g., PMD) pixels implement two channels, 
acquiring measurements with 180° phase shift.

• In this work we use PMD technology and denote the two 
pixel channels by A and B.

• In this case, the sum of both channels yields an intensity 
measurement, ideally independent from 𝑓𝑓 and 𝜃𝜃:

𝐼𝐼 𝑖𝑖, 𝑗𝑗 = 𝑚𝑚A 𝑖𝑖, 𝑗𝑗 + 𝑚𝑚B 𝑖𝑖, 𝑗𝑗 = 𝐼𝐼, ∀𝑖𝑖, 𝑗𝑗
• Provided that 𝐼𝐼 can be computed per raw image 

acquisition, these images can be used to estimate the 
motion between consecutive raw images.



• Image formation model as composition of:
1. Motion, modeled by the 2D motion operator ℳ
2. Blur, modeled by the convolution kernel 𝐵𝐵 𝑥𝑥,𝑦𝑦
3. Downsampling, modeled by the operator 𝒟𝒟
𝑚𝑚 𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝑢𝑢, 𝑣𝑣 = 𝒟𝒟 𝐵𝐵 𝑥𝑥,𝑦𝑦 ∗2 ℳ𝑖𝑖,𝑗𝑗,𝑘𝑘 𝑚𝑚 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑥𝑥,𝑦𝑦

Direct Sensing Model for SR:

LR 2D Spatial
Domain (discrete)

HR 2D Spatial
Domain (discrete/ 
continuous)

Common for all
pixel channels!

𝑖𝑖, 𝑗𝑗: intra-frame motion
𝑘𝑘: inter-frame motion



• Two-step fast and robust method [1] :
1. Non-iterative data fusion
2. Iterative deblurring

• Let 𝑍𝑍 𝑖𝑖, 𝑗𝑗 = 𝑩𝑩𝑚𝑚HR 𝑖𝑖, 𝑗𝑗 , be the blurred version of the HR raw image 
we aim to estimate in step 1. Then, we seek: 

�̂�𝑍 𝑖𝑖, 𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑍𝑍 �
𝑘𝑘=0

𝐾𝐾

𝑫𝑫𝑴𝑴𝑖𝑖,𝑗𝑗,𝑘𝑘𝑍𝑍 − 𝑚𝑚 𝑖𝑖, 𝑗𝑗, 𝑘𝑘
𝑝𝑝
𝑝𝑝

Where 𝑩𝑩, 𝑫𝑫, and 𝑴𝑴𝑖𝑖,𝑗𝑗,𝑘𝑘 are matrix equivalents of discrete operators.
Closed-form solutions:
– 𝑝𝑝 = 2: mean value of registered frames
– 𝑝𝑝 = 1: median value of registered frames

LR to HR - Inverting the Direct Model:

[1] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super 
resolution,” in: IEEE Trans. Image Proc., vol. 13, no. 10, pp. 1327–1344, 2004.



• How to attain intra-/inter-frame registration? → Use the 
intensity images 𝐼𝐼 𝑖𝑖, 𝑗𝑗

• To obtain 2D displacements, retrieve first phase shifts in 
2D-frequency domain [2]:

2𝜋𝜋 𝑓𝑓H 𝑓𝑓V
Δ𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘
Δ𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘

= arg
ℱ𝑓𝑓H,𝑓𝑓V𝑰𝑰 𝑖𝑖, 𝑗𝑗,𝑘𝑘
ℱ𝑓𝑓H,𝑓𝑓V𝑰𝑰 𝑖𝑖r, 𝑗𝑗r,𝑘𝑘r

LR to HR - Inverting the Direct Model:

[2] P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration 
of aliased images with application to superresolution,” in: EURASIP Journal on Advances in 
Signal Processing, vol. 2006, no. 1, pp. 1–14, 2006.

Reference intensity image2D Displacement Phase Shift

• For a set of 𝑓𝑓H 𝑓𝑓V ∈ Ω2 (low-pass region), we obtain a set 
of equations. → Retrieve Δ𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 , Δ𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘 via least squares.



• Two-step fast and robust method [1] :
1. Non-iterative data fusion
2. Iterative deblurring

• For the iterative deblurring we use the collaborative filtering 
extension of BM3D [3]. Key points:

– Patch matching allows obtaining 3D data by grouping similar 2D patches
– Sparsity is pursued in a 3D transform domain
– Plus: exact computation of the noise variance in transform domain
– Regularized inversion: the attained noise reduction compensates the inherent 

noise amplification of a low-pass deconvolution (deblurring)

LR to HR - Inverting the Direct Model:

[3] Y. Mäkinen, L. Azzari, and A. Foi, “Collaborative filtering of correlated noise: Exact 
transform-domain variance for improved shrinkage and patch matching,” in: IEEE 
Transactions on Image Processing, vol. 29, pp. 8339–8354, 2020.



5. Experimental Results



Synthetic Experiments:
• Datasets: Middlebury stereo datasets 2003 and 2005:

– RGB + disparity of 8 complex scenes. RGB samples from 2005: 

Art Books Dolls

Laundry Moebius Reindeer



Synthetic Experiments:
• Datasets: Middlebury stereo datasets 2003 and 2005:

– RGB + disparity of 8 complex scenes.
• For each scene, 15 frames of HR synthetic ToF raw data (2 

pixel channels, 4 phases, 1 frequency) are generated.
• Raw images of both pixel channels are randomly 2D-shifted, 

up to ±5 pixels in HR domain.
• 10 independent experiments per scene.
• The shifted HR raw data is blurred and downsampled to 

generate the LR raw data.
• Apply the proposed SR pipeline to LR raw data (SR factor 2).
• HR depth images are obtained via the four phases algorithm.



Synthetic Experiments. Results:
• Middlebury stereo dataset 2003:

HR 
Ground 
Truth

Depth 
from SR 
Raw Data

Cones Teddy



Synthetic Experiments. Results:
• Middlebury stereo dataset 2005:

HR 
Ground 
Truth

Depth 
from SR 
Raw Data

Art Books Dolls



Synthetic Experiments. Results:
• Middlebury stereo dataset 2005:

HR 
Ground 
Truth

Depth 
from SR 
Raw Data

Laundry Moebius Reindeer



Synthetic Experiments. Results:
• Middlebury stereo datasets. RMSE and SSIM plots:

Raw Data Amplitude Depth

• 8 scenes
• 10 experiments
• Solid: SR result
• Dashed: bicubic 

interpolation



Real Experiments:
• Hardware: ZESS MultiCam with medium-range illumination system 

mounted on a rotary table
• Accurate angular control allows for custom (horizontal) 

displacements with subpixel accuracy
• Test scene: hall of ZESS building (≥16.5m range)
• Two horizontal inter-frame displacements considered:

a) 1.34 pixels
b) 6.43 × 10−2 pixels

• 15 consecutive raw data frames
ZESS 
MultiCam
Rotary 
Table

NIR LED 
Modules

ZESS
Hall



Real Experiments. Registration Results:
• The proposed raw image registration procedure attains high 

subpixel accuracy, e.g., in the order of 𝟏𝟏𝟏𝟏−𝟑𝟑 pixels in case b)
Case a): Case b):



Real Experiments. Depth SR Results:
• The acquired raw data is used as input for our SR pipeline. 

The SR raw data is then used to obtain a depth image.
Depth from LR Raw Data Depth from SR Raw Data

Case a):

Case b):



6. Conclusions



Conclusions:
• ToF cameras can retrieve 3D, but its resolution is an order of 

magnitude lower than conventional 2D cameras.
• Existing multi-frame SR methods ignore intra-frame motion 

and operate directly on depth images.
• We have presented a SR framework that works on ToF raw 

data and accounts for both inter- and intra-frame motion.
• Based on two separable tasks:

– Raw data fusion
– Deblurring

• Experiments on synthetic and real ToF data from challenging 
scenes witnessed good performance of the approach.



Thank you for
your Attention!

Do not hesitate forwarding your questions to:
heredia@zess.uni-siegen.de

mailto:heredia@zess.uni-siegen.de
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