

Cycle generative adversarial network approaches to produce novel portable chest x-ray images for COVID-19 diagnosis

Daniel I. Morís, J. de Moura, J. Novo and M. Ortega

VARPA Group Department of Computer Science University of A Coruña

Table of Contents

- 1 Introduction
- Materials and methods Dataset Methodology
- 3 Results
- 4 Conclusions and Future Works

Table of Contents

1 Introduction

- Materials and methods
 Dataset
 Methodology
- 3 Results
- ④ Conclusions and Future Works

COVID-19: The Global Pandemic

COVID-19: The Global Pandemic

NIVERSIDADE DA CORUÑA

- Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by the novel coronavirus SARS-CoV-2.
- Due to its rapid spread, the COVID-19 was declared as a global pandemic by the WHO in March 11th, 2020.

COVID-19

COVID-19

- It mainly affects the respiratory tissues.
- For the most severe cases, mechanical ventilation and ICU admission could be necessary.

- difficulty breathing or shortness of breath.
- chest pain or pressure.
- · loss of speech or movement.

Chest X-ray image modality

Chest X-ray image modality

• Chest X-ray image modality is a **well-established medical imaging technique**, widely used during the last decades for the **clinical diagnosis of common pulmonary diseases**.

Portable Chest X-ray devices

Portable Chest X-ray devices

- To control the COVID-19 spread, the cut of transmision chains is critical.
- To minimize the **risk of cross-contamination**, American College of Radiology recommends to use **portable chest X-ray machinery**.

Example of a common portable chest X-ray device capture.

Data scarcity problem

Data scarcity problem

- Data scarcity is usually a problem in medical imaging domains.
- Due to the recent emergence of the COVID-19 disease, data scarcity is even **more critical** in this particular domain.

Example of chest X-ray images from a real clinical context

Cycle Generative Adversarial Networks (CycleGAN)

Cycle Generative Adversarial Networks (CycleGAN)

- This GAN architecture is able to perform an image translation.
- Powerful approach to generate novel synthetic images.

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (Zhu et al., 2017)

COVID-19 detection in chest X-ray images

- Many works have addressed the automatic COVID-19 detection in chest X-ray images.
- However, a great part of these works used the COVID-19 Image Data Collection dataset.
- In that dataset, most of the images were captured with fixed X-ray devices, that provide good quality and detail in contrast with portable devices.
- Most of the images have no reference about the used acquisition device.

Objectives

Objectives

- Obtain a method able to artificially increase the dimensionality of a chest X-ray dataset
 - Help expert clinicians in the task of COVID-19 diagnosis
 - Unsupervised strategy
 - No need for paired data
 - Augmentation of three different classes
 - Dataset composed of images acquired with a portable chest X-ray device of a real clinical context

Table of Contents

1 Introduction

Materials and methods

Dataset Methodology

- 3 Results
- ④ Conclusions and Future Works

Table of Contents

1 Introduction

Materials and methods Dataset Methodology

- 3 Results
- ④ Conclusions and Future Works

Dataset

CHUAC Dataset

- The images were provided by the Radiology Service of the Complexo Hospitalario Universitario A Coruña (CHUAC).
- The chest X-ray images were captured with portable devices during the first peak of the pandemic.

Dataset

CHUAC Dataset

- Capture devices: Agfa dr100E GE and Optima Rx200
- 600 images
 - 200 healthy cases (i.e. without pleural or pulmonary diseases)
 - 200 pathological cases (with pulmonary pathologies others than COVID-19)
 - 200 COVID-19 genuine cases

Representative examples of the CHUAC dataset. (a) Healthy case. (b) Pathological case. (c) COVID-19 case.

Table of Contents

1 Introduction

2 Materials and methods Dataset Methodology

- 3 Results
- ④ Conclusions and Future Works

Methodology

- The methodology is divided in two main steps
 - Data augmentation
 - Screening

Overview of the proposed methodology.

- 3 different scenarios are considered.
 - Healthy vs Pathological
 - Healthy vs COVID-19
 - Pathological vs COVID-19

Network architecture and training details

- All the available images are used to train the CycleGAN models.
- CycleGAN configuration: **ResNet with 9 residual blocks** architecture for the **generative model**.
- Trained during 250 epochs with Adam algorithm (constant learning rate of $\alpha = 0,0002$).
- Mini-batch size of 1.

Sitic Daniel I. Morís, J. de Moura, J. Novo and M. Ortega UNIVERSIDADE DA CORUÑA

1st scenario

Translation from Healthy to Pathological and vice versa.

- 1st pathway: the model should add pathological structures.
- 2nd pathway: the model should remove pathological structures.

2nd scenario

- Translation from Healthy to COVID-19 and vice versa.
 - 1st pathway: the model should add COVID-19 affectation structures.
 - 2nd pathway: the model should remove COVID-19 affectation structures.

3rd scenario

- Translation from Pathological to COVID-19 and vice versa.
 - 1st pathway: the model should remove COVID-19 affectation to add pathological structures of other pulmonary diseases.
 - 2nd pathway: the model should remove pathological structures of pulmonary diseases others than COVID-19 to add COVID-19 affectation.

Methodology: 2nd step - COVID-19 Screening

Screening

- We perform screening tasks to validate the separability among generated samples.
- The last experiment proves the suitability of the oversampled dataset for a COVID-19 screening.

Network architecture and training details

- A Dense Convolutional Network Architecture (DenseNet) was used (particularly, a DenseNet-161).
- The input data is randomly partitioned in three sets.
 - 60 % of samples for training.
 - 20 % of samples for validation.
 - 20 % of samples for test.

Network architecture and training details

- The used model was pretrained on the ImageNet dataset.
- Cross-entropy as loss function.
- The model was trained 200 epochs, with the Stochastic Gradient Descent Algorithm (SGD).
 - Constant learning rate of $\alpha = 0.01$.
 - Mini-batch size of 4.
 - First-order momentum of 0.9.
 - The training process is repeated 5 times.

Table of Contents

- 1 Introduction
- Materials and methods
 Dataset
 Methodology
- 3 Results
- ④ Conclusions and Future Works

Results - Experiments

Experimental validation

- In order to validate our proposal, 4 experiments were conducted.
- The first 3 experiments validate the degree of separability among the generated images for the possible scenarios.
 - Healthy vs Pathological
 - Healthy vs COVID-19
 - Pathological vs COVID-19
- The fourth experiment was performed to analyze the COVID-19 screening with the oversampled dataset.
- For the experimental validation, 4 different metrics are used: **Precision**, **Recall**, **F1-Score** and **Accuracy**.

Results - Experiments

List of conducted experiments

- 1st experiment Separability among healthy and pathological generated samples
- 2nd experiment Separability among healthy and COVID-19 generated samples
- **3rd experiment** Separability among pathological and COVID-19 generated samples
- 4th experiment COVID-19 screening using the original dataset with oversampling

Separability among healthy and pathological generated samples

- Test results demonstrate a **proper separability** among the healthy and pathological generated images.
- We achieved a 0.9375 of global accuracy for test.

Cases	Precision	Recall	F1-Score
Healthy	0.92	0.95	0.94
Pathological	0.95	0.93	0.94

Separability performance among healthy and pathological generated samples.

Separability among healthy and COVID-19 generated samples

- Test results demonstrate a **proper separability** among the healthy and COVID-19 generated images.
- We achieved a 0.8687 of global accuracy for test.

Cases	Precision	Recall	F1-Score
Healthy	0.84	0.90	0.87
COVID-19	0.90	0.84	0.87

Separability performance among healthy and COVID-19 generated samples.

Separability among pathological and COVID-19 generated samples

- Test results demonstrate a **proper separability** among the pathological and COVID-19 generated images.
- We achieved a 0.9375 of global accuracy for test.

Cases	Precision	Recall	F1-Score
Pathological	0.91	0.98	0.94
COVID-19	0.97	0.90	0.93

Separability performance among pathological and COVID-19 generated samples.

Results - 4th experiment - Oversampled dataset

- The correct classification and misclassification ratios show acceptable results.
- Particularly, the correct classification ratio was a **0.9328** for the **Healthy/Pathological** case (**NON COVID-19**) and a **0.9098** for the **COVID-19** samples.

Results - Synthetic image generation

Image translation

It is clearly visible that the images obtained using the CycleGAN have remarkable and well-synthesized differences in pulmonary regions.

Examples of images generated by the CycleGAN architecture. (a) 1st scenario, Healthy vs Pathological. (b) 2nd scenario, Healthy vs COVID-19. (c) 3rd scenario, Pathological vs COVID-19.

Table of Contents

- 1 Introduction
- Materials and methods
 Dataset
 Methodology
- 3 Results
- 4 Conclusions and Future Works

Conclusions

Conclusions

- We propose novel and fully automatic approaches to artificially increase the size of a chest X-ray dataset used for COVID-19 diagnosis.
- The CycleGAN was used in order to generate synthetic images in 3 complementary scenarios.
- Satisfactory results were obtained despite the low quality and detail of the portable acquisition devices used to build the input dataset

Future Works

Future Works

- This oversampling strategy can be proved to improve the performance of a particular final task.
- This methodology could be exploited in the context of other pulmonary pathologies or other medical imaging domains.

Acknowledgements

This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project: Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; Axencia Galega de Innovación (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia.

Questions

Thanks for your attention!

