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COVID-19: The Global Pandemic

COVID-19: The Global Pandemic
• Coronavirus Disease 2019 (COVID-19) is an infectious disease

caused by the novel coronavirus SARS-CoV-2.

• Due to its rapid spread, the COVID-19 was declared as a global
pandemic by the WHO in March 11th, 2020.
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COVID-19

COVID-19
• It mainly affects the respiratory tissues.

• For the most severe cases, mechanical ventilation and ICU
admission could be necessary.
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Chest X-ray image modality

Chest X-ray image modality
• Chest X-ray image modality is a well-established medical imaging

technique, widely used during the last decades for the clinical
diagnosis of common pulmonary diseases.
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Portable Chest X-ray devices

Portable Chest X-ray devices
• To control the COVID-19 spread, the cut of transmision chains is

critical.

• To minimize the risk of cross-contamination, American College of
Radiology recommends to use portable chest X-ray machinery.

Example of a common portable chest X-ray device capture.
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Data scarcity problem

Data scarcity problem
• Data scarcity is usually a problem in medical imaging domains.

• Due to the recent emergence of the COVID-19 disease, data scarcity
is even more critical in this particular domain.

Example of chest X-ray images from a real clinical context
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Cycle Generative Adversarial Networks (CycleGAN)

Cycle Generative Adversarial Networks (CycleGAN)
• This GAN architecture is able to perform an image translation.

• Powerful approach to generate novel synthetic images.

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (Zhu et al., 2017)
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COVID-19 detection in chest X-ray images

COVID-19 detection in chest X-ray images
• Many works have addressed the automatic COVID-19 detection in

chest X-ray images.

• However, a great part of these works used the COVID-19 Image
Data Collection dataset.

• In that dataset, most of the images were captured with fixed X-ray
devices, that provide good quality and detail in contrast with
portable devices.

• Most of the images have no reference about the used acquisition
device.
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Objectives

Objectives
• Obtain a method able to artificially increase the dimensionality of a

chest X-ray dataset
• Help expert clinicians in the task of COVID-19 diagnosis
• Unsupervised strategy
• No need for paired data
• Augmentation of three different classes
• Dataset composed of images acquired with a portable chest X-ray

device of a real clinical context
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Dataset

CHUAC Dataset
• The images were provided by the Radiology Service of the Complexo

Hospitalario Universitario A Coruña (CHUAC).

• The chest X-ray images were captured with portable devices during
the first peak of the pandemic.
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Dataset

CHUAC Dataset
• Capture devices: Agfa dr100E GE and Optima Rx200
• 600 images

• 200 healthy cases (i.e. without pleural or pulmonary diseases)
• 200 pathological cases (with pulmonary pathologies others than

COVID-19)
• 200 COVID-19 genuine cases

Representative examples of the CHUAC dataset. (a) Healthy case. (b) Pathological case. (c) COVID-19 case.
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Methodology

• The methodology is divided in two main steps
• Data augmentation
• Screening

Overview of the proposed methodology.
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Methodology: 1st step - Data Augmentation

• 3 different scenarios are considered.
• Healthy vs Pathological
• Healthy vs COVID-19
• Pathological vs COVID-19
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Methodology: 1st step - Data Augmentation

Network architecture and training details
• All the available images are used to train the CycleGAN models.

• CycleGAN configuration: ResNet with 9 residual blocks
architecture for the generative model.

• Trained during 250 epochs with Adam algorithm (constant learning
rate of α = 0,0002).

• Mini-batch size of 1.
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Methodology: 1st step - Data Augmentation

1st scenario
• Translation from Healthy to Pathological and vice versa.

• 1st pathway: the model should add pathological structures.
• 2nd pathway: the model should remove pathological structures.
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Methodology: 1st step - Data Augmentation

2nd scenario
• Translation from Healthy to COVID-19 and vice versa.

• 1st pathway: the model should add COVID-19 affectation structures.
• 2nd pathway: the model should remove COVID-19 affectation

structures.

1st pathway

2nd pathway

Healthy COVID-19
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Methodology: 1st step - Data Augmentation

3rd scenario
• Translation from Pathological to COVID-19 and vice versa.

• 1st pathway: the model should remove COVID-19 affectation to add
pathological structures of other pulmonary diseases.

• 2nd pathway: the model should remove pathological structures of
pulmonary diseases others than COVID-19 to add COVID-19
affectation.

1st pathway

2nd pathway

COVID-19Pathological
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Methodology: 2nd step - COVID-19 Screening

Screening
• We perform screening tasks to validate the separability among

generated samples.

• The last experiment proves the suitability of the oversampled dataset
for a COVID-19 screening.
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Methodology: 2nd step - COVID-19 Screening

Network architecture and training details
• A Dense Convolutional Network Architecture (DenseNet) was

used (particularly, a DenseNet-161).
• The input data is randomly partitioned in three sets.

• 60 % of samples for training.
• 20 % of samples for validation.
• 20 % of samples for test.
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Methodology: 2nd step - COVID-19 Screening

Network architecture and training details
• The used model was pretrained on the ImageNet dataset.

• Cross-entropy as loss function.
• The model was trained 200 epochs, with the Stochastic Gradient

Descent Algorithm (SGD).
• Constant learning rate of α = 0,01.
• Mini-batch size of 4.
• First-order momentum of 0.9.
• The training process is repeated 5 times.
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Results - Experiments

Experimental validation
• In order to validate our proposal, 4 experiments were conducted.
• The first 3 experiments validate the degree of separability among

the generated images for the possible scenarios.
• Healthy vs Pathological
• Healthy vs COVID-19
• Pathological vs COVID-19

• The fourth experiment was performed to analyze the COVID-19
screening with the oversampled dataset.

• For the experimental validation, 4 different metrics are used:
Precision, Recall, F1-Score and Accuracy.
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Results - Experiments

List of conducted experiments

• 1st experiment - Separability among healthy and pathological
generated samples

• 2nd experiment - Separability among healthy and COVID-19
generated samples

• 3rd experiment - Separability among pathological and COVID-19
generated samples

• 4th experiment - COVID-19 screening using the original dataset with
oversampling
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Results - 1st experiment - Healthy vs Pathological

Separability among healthy and pathological generated samples
• Test results demonstrate a proper separability among the healthy

and pathological generated images.

• We achieved a 0.9375 of global accuracy for test.

Separability performance among healthy and pathological generated samples.
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Results - 2nd experiment - Healthy vs COVID-19

Separability among healthy and COVID-19 generated samples
• Test results demonstrate a proper separability among the healthy

and COVID-19 generated images.

• We achieved a 0.8687 of global accuracy for test.

Separability performance among healthy and COVID-19 generated samples.
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Results - 3rd experiment - Pathological vs COVID-19

Separability among pathological and COVID-19 generated
samples

• Test results demonstrate a proper separability among the
pathological and COVID-19 generated images.

• We achieved a 0.9375 of global accuracy for test.

Separability performance among pathological and COVID-19 generated samples.
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Results - 4th experiment - Oversampled dataset

• The correct classification and misclassification ratios show
acceptable results.

• Particularly, the correct classification ratio was a 0.9328 for the
Healthy/Pathological case (NON COVID-19) and a 0.9098 for the
COVID-19 samples.

Confusion matrix for the 4th experiment on the test set.
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Results - Synthetic image generation

Image translation
It is clearly visible that the images obtained using the CycleGAN have
remarkable and well-synthesized differences in pulmonary regions.

Examples of images generated by the CycleGAN architecture. (a) 1st scenario, Healthy vs Pathological. (b) 2nd scenario, Healthy vs
COVID-19. (c) 3rd scenario, Pathological vs COVID-19.
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Conclusions

Conclusions
• We propose novel and fully automatic approaches to artificially

increase the size of a chest X-ray dataset used for COVID-19
diagnosis.

• The CycleGAN was used in order to generate synthetic images in 3
complementary scenarios.

• Satisfactory results were obtained despite the low quality and
detail of the portable acquisition devices used to build the input
dataset
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Future Works

Future Works
• This oversampling strategy can be proved to improve the

performance of a particular final task.

• This methodology could be exploited in the context of other
pulmonary pathologies or other medical imaging domains.
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Questions

Thanks for your attention!
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