

Robust graph-filter identification with graph denoising regularization

Samuel Rey King Juan Carlos University - Madrid, Spain

Joint work with: A. G. Marques

46th IEEE International Conference on acoustic, Speech and Signal Processing - Toronto, Canada - June 6-11, 2021

Network science and GSP

- Data is becoming more heterogeneous and intricate
 - \Rightarrow Often defined over irregulars domains and networks
 - \Rightarrow More complex structure demands more complex architectures
- Graph SP: models data structure as a graph [Shuman13], [Sandryhaila13]
 - \Rightarrow Leverages the graph topology to process the data
 - \Rightarrow Broadens classical SP to graph signals

Energy network

Brain network

Social network

Imperfections in the graph topology

- In GSP it is usually assumed that the graph is perfectly known
- In practical cases the graph contains errors
 - \Rightarrow Perturbations and observational noise in explicit networks
 - \Rightarrow Imperfections derived of graphs learned from the data
- Ignored errors will hinder the performance of GSP models
 ⇒ Filter identification is particularly sensitive to graph errors

Original graph

 $\mathsf{Added}/\mathsf{Removed}\ \mathsf{edges}$

Noisy edges

Imperfections in the graph topology

- In GSP it is usually assumed that the graph is perfectly known
- In practical cases the graph contains errors
 - \Rightarrow Perturbations and observational noise in explicit networks
 - \Rightarrow Imperfections derived of graphs learned from the data
- Ignored errors will hinder the performance of GSP models
 ⇒ Filter identification is particularly sensitive to graph errors

Original graph

 $\mathsf{Added}/\mathsf{Removed}\ \mathsf{edges}$

Noisy edges

► This talk: approach the graph FI accounting for topology imperfections

Preliminaries

► Graph G with N nodes and adjacency A ⇒ A_{ij} = Proximity between i and j

• Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i =$ Signal value at node i

Preliminaries

► Graph G with N nodes and adjacency A ⇒ A_{ii} = Proximity between i and j

► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$

► Associated with \mathcal{G} is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. \mathbf{A} , \mathbf{L}) $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (local structure in \mathcal{G}) \Rightarrow Diagonalized as $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$

• Graph filters are defined as $\mathbf{H} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k$ \Rightarrow Diagonalized as $\mathbf{H} = \mathbf{V} \operatorname{diag}(\tilde{\mathbf{h}}) \mathbf{V}^T$

Preliminaries

► Graph G with N nodes and adjacency A ⇒ A_{ii} = Proximity between i and j

► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$

► Associated with \mathcal{G} is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. \mathbf{A} , \mathbf{L}) $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (local structure in \mathcal{G}) \Rightarrow Diagonalized as $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$

- Graph filters are defined as $\mathbf{H} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k$ $\Rightarrow \text{Diagonalized as } \mathbf{H} = \mathbf{V} \text{diag}(\tilde{\mathbf{h}}) \mathbf{V}^T$
- Graph signal x is stationary on \mathcal{G} if \mathbf{C}_x is diagonalized by V $\Rightarrow \mathbf{C}_x$ and S commute $\mathbf{C}_x \mathbf{S} = \mathbf{S}\mathbf{C}_x$

Motivation

- ▶ In graph FI from input/output pairs we estimate H ∈ ℝ^{N×N}
 ⇒ Leveraging that it is a polynomial of the GSO
- We observed the perturbed $\bar{\mathbf{S}} \in \mathbb{R}^{N \times N} \Rightarrow \bar{\mathbf{S}} \neq \mathbf{S}$
 - \Rightarrow The true **S** is unknown
- ▶ What if we estimate the filter as $\mathbf{H} = \sum_{k=0}^{K} h_k \mathbf{\bar{S}}^k$? ⇒ Error between \mathbf{S}^k and $\mathbf{\bar{S}}^k$ grows with k

Observed \mathcal{G}

Robust graph-filter identification with graph denoising regularization

Motivation

- ► In graph FI from input/output pairs we estimate H ∈ ℝ^{N×N} ⇒ Leveraging that it is a polynomial of the GSO
- ▶ We observed the perturbed $\bar{\mathbf{S}} \in \mathbb{R}^{N \times N} \Rightarrow \bar{\mathbf{S}} \neq \mathbf{S}$
 - \Rightarrow The true **S** is unknown
- ▶ What if we estimate the filter as $\mathbf{H} = \sum_{k=0}^{K} h_k \bar{\mathbf{S}}^k$? ⇒ Error between \mathbf{S}^k and $\bar{\mathbf{S}}^k$ grows with k

Problem: learn H as polynomial of \overline{S} implies a high estimation error

Robust graph-filter identification with graph denoising regularization

Context, and goal

- Limited number of works dealing with robust GSP
 - \Rightarrow Graphon based perturbation models [Miettinen19]
 - \Rightarrow Small perturbation analysis of the spectrum of ${\bf L}$ [Ceci20a]
 - \Rightarrow Combination of TLS with SEMs (TLS-SEM) [Ceci20b]
 - \Rightarrow TLS-SEM represented as a specific graph filter $\mathbf{H}_{\mathit{SEM}}$

Context, and goal

- Limited number of works dealing with robust GSP
 - \Rightarrow Graphon based perturbation models [Miettinen19]
 - \Rightarrow Small perturbation analysis of the spectrum of ${\bf L}$ [Ceci20a]
 - \Rightarrow Combination of TLS with SEMs (TLS-SEM) [Ceci20b]
 - \Rightarrow TLS-SEM represented as a specific graph filter $\mathbf{H}_{\mathit{SEM}}$

Challenges

- \Rightarrow Translate errors in ${\cal G}$ to its spectrum is hard
- \Rightarrow Numerical issues in vertex-domain due to high-order polynomials

Context, and goal

Limited number of works dealing with robust GSP

- \Rightarrow Graphon based perturbation models [Miettinen19]
- \Rightarrow Small perturbation analysis of the spectrum of ${\bf L}$ [Ceci20a]
- \Rightarrow Combination of TLS with SEMs (TLS-SEM) [Ceci20b]
 - \Rightarrow TLS-SEM represented as a specific graph filter $\mathbf{H}_{\mathit{SEM}}$

Challenges

- \Rightarrow Translate errors in ${\cal G}$ to its spectrum is hard
- \Rightarrow Numerical issues in vertex-domain due to high-order polynomials

• Our Goal: identify a graph filter H from M inputs/outputs pairs

- \Rightarrow Assuming imperfect knowledge of the GSO
- \Rightarrow Obtaining a denoised version of the GSO
- **Key**: Introduce a graph denoising regularization term

- Let \mathbf{X}/\mathbf{Y} be the observed $N \times M$ input/output
- Assume that $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{E}$
- The goal is to estimate \mathbf{H} , a graph filter of \mathbf{S} , but only $\overline{\mathbf{S}}$ is known

- Let \mathbf{X}/\mathbf{Y} be the observed $N \times M$ input/output
- Assume that $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{E}$
- The goal is to estimate \mathbf{H} , a graph filter of \mathbf{S} , but only $\overline{\mathbf{S}}$ is known
- The usual FI formulation transforms

$$\min_{\tilde{\mathbf{h}}} \|\mathbf{Y}\!-\!\mathbf{V}\mathsf{diag}(\tilde{\mathbf{h}})\mathbf{V}^T\mathbf{X}\|_F^2$$

- Let \mathbf{X}/\mathbf{Y} be the observed $N \times M$ input/output
- Assume that $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{E}$
- The goal is to estimate \mathbf{H} , a graph filter of \mathbf{S} , but only $\overline{\mathbf{S}}$ is known
- The usual FI formulation transforms

$$\min_{\tilde{\mathbf{h}},\mathbf{V}} \|\mathbf{Y} - \mathbf{V} \mathsf{diag}(\tilde{\mathbf{h}}) \mathbf{V}^T \mathbf{X} \|_F^2 \quad \text{s. t. } \mathbf{V} \mathbf{V}^T = \mathbf{I}$$

- Let \mathbf{X}/\mathbf{Y} be the observed $N \times M$ input/output
- Assume that $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{E}$
- The goal is to estimate H, a graph filter of S, but only \overline{S} is known
- The usual FI formulation transforms

$$\min_{\tilde{\mathbf{h}},\mathbf{V}} \|\mathbf{Y} \!-\! \mathbf{V} \mathsf{diag}(\tilde{\mathbf{h}}) \mathbf{V}^T \mathbf{X} \|_F^2 \quad \text{s. t. } \mathbf{V} \mathbf{V}^T \!=\! \mathbf{I}$$

Proposed robust filter identification (RFI) formulation

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}}\|\mathbf{Y}-\mathbf{H}\mathbf{X}\|_F^2+\lambda d(\mathbf{S},\bar{\mathbf{S}})+\beta\|\mathbf{S}\|_0\quad\text{s. t. }\;\mathbf{SH}=\mathbf{HS}$

- \blacktriangleright Perform joint estimation of ${\bf H}$ and ${\bf S}$ in vertex domain
- \blacktriangleright The constraint captures the fact that ${\bf H}$ is a polynomial of ${\bf S}$
- \blacktriangleright Second term is a distance measure between $\bar{\mathbf{S}}$ and \mathbf{S}

Graph perturbation model

- Several types of graph perturbations
- We assume that \mathcal{G} is perturbed by adding/deleting edges

 \Rightarrow Edges are pertubed independently with a given probability

 $\blacktriangleright \text{ We set } d(\mathbf{S},\bar{\mathbf{S}}) = \|\mathbf{S}-\bar{\mathbf{S}}\|_0$

Graph perturbation model

- Several types of graph perturbations
- We assume that \mathcal{G} is perturbed by adding/deleting edges

 $\Rightarrow \text{ Edges are pertubed independently with a given probability}$ $\blacktriangleright \text{ We set } d(\mathbf{S}, \bar{\mathbf{S}}) = \|\mathbf{S} - \bar{\mathbf{S}}\|_0$

Convex relaxations

- ℓ_1 as convex surrogate for ℓ_0
- Constraint SH = HS rewritten as a regularizer

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \lambda \|\mathbf{S} - \bar{\mathbf{S}}\|_1 + \beta \|\mathbf{S}\|_1 + \gamma \|\mathbf{S}\mathbf{H} - \mathbf{H}\mathbf{S}\|_F^2$

Still non-convex, but amenable to alternating optimization

Alternating optimization algorithm

Step 1: Filter Identification

 \blacktriangleright Assume $\hat{\mathbf{S}}$ is known, estimate $\hat{\mathbf{H}}$

$$\hat{\mathbf{H}} = \arg\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \gamma \|\hat{\mathbf{S}}\mathbf{H} - \mathbf{H}\hat{\mathbf{S}}\|_F^2$$

 \Rightarrow LS problem with closed-form solution

Step 2: Graph Denoising

• Assume $\hat{\mathbf{H}}$ is known, estimate $\hat{\mathbf{S}}$

$$\hat{\mathbf{S}} = \arg\min_{\mathbf{S}\in\mathcal{S}} \lambda \|\mathbf{S} - \bar{\mathbf{S}}\|_1 + \beta \|\mathbf{S}\|_1 + \gamma \|\mathbf{S}\hat{\mathbf{H}} - \hat{\mathbf{H}}\mathbf{S}\|_F^2$$

• Convergence is sensitive to the value of γ

 \Rightarrow If γ is close to 0 the problems decouple

 \Rightarrow If γ is too large convergence to non-robust solution

 \Rightarrow Start with small γ and increase it progressively

 \blacktriangleright X and Y can exhibit properties depending on ${\cal G}$

- \Rightarrow Bandlimited, diffused, stationary
- \Rightarrow This information can be leveraged to enhance the performance

Universidad Rey Juan Carlos

 $\blacktriangleright~{\bf X}$ and ${\bf Y}$ can exhibit properties depending on ${\cal G}$

- \Rightarrow Bandlimited, diffused, stationary
- \Rightarrow This information can be leveraged to enhance the performance
- Focus on stationary \mathbf{X} and/or \mathbf{Y}

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \lambda \|\mathbf{S} - \bar{\mathbf{S}}\|_{1} + \beta \|\mathbf{S}\|_{1} + \gamma \|\mathbf{S}\mathbf{H} - \mathbf{H}\mathbf{S}\|_{F}^{2}$ s.t. $\|\mathbf{C}_{Y}\mathbf{S} - \mathbf{S}\mathbf{C}_{Y}\|_{F} \le \epsilon_{Y}, \|\mathbf{C}_{X}\mathbf{S} - \mathbf{S}\mathbf{C}_{X}\|_{F} \le \epsilon_{X},$

 \Rightarrow Constraints considered in the graph denoising step

Filter identification step can be augmented with

 $\Rightarrow \mathbf{C}_Y \mathbf{H} = \mathbf{H} \mathbf{C}_Y \text{ and } \mathbf{C}_X \mathbf{H} = \mathbf{H} \mathbf{C}_X$

Numerical results - Test case 1

- Erdős Rényi (ER) graphs with N = 20 and p = 0.25
- Edge perturbation iid with probability $\delta = 0.1$
- M = 10 input/output observations

- "FI": ignores perturbations
- "RFI iter": iterative RFI algorithm
- "RFI-D": leverages stationarity
 - \Rightarrow First $\hat{\mathbf{S}}$ with $\gamma=0$
 - \Rightarrow Then $\hat{\mathbf{H}}$ with large γ

- Clear advantage of robust formulations
- "RFI iter" ignores stationarity and is more sensitive to noise

Numerical results - Test case 2

• "RFI-R": low complexity variant replacing $\mathbf{SH} = \mathbf{HS}$ with $\hat{\mathbf{C}}_{Y}\mathbf{H} = \mathbf{H}\hat{\mathbf{C}}_{Y}$

- \blacktriangleright As M grows, robust models recover a more accurate $\hat{\mathbf{S}}$
- \blacktriangleright Better estimates $\hat{\mathbf{S}}$ and increasing M improve estimate \mathbf{H}
 - \Rightarrow "RFI-R" performs worse than "RFI-D" since it not using $\hat{\mathbf{S}}$

Numerical results - Test case 3

- ► TLS-SEM outperform RFI algorithms under "SEM" model
 - \Rightarrow Only for small perturbation probability
- \blacktriangleright RFI always outperform TLS-SEM under ${\bf H}$ model
- Good performance of RFI algorithms for both signal models
 - \Rightarrow Benefits of more general assumptions

Conclusions

- Proposed general robust graph filter identification model
 - \Rightarrow Joint graph denoising and filter identification performed
 - \Rightarrow Approached in the vertex-domain
- Formulated as a non-convex optimization problem
 - \Rightarrow Convex relaxation are leveraged
 - \Rightarrow Proposed an alternated minimization algorithm
 - \Rightarrow Stationarity assumptions are incorporated
- Numerical evaluation over synthetic and real-world graphs
 ⇒ Comparison with TLS-SEM

Conclusions

- Proposed general robust graph filter identification model
 - \Rightarrow Joint graph denoising and filter identification performed
 - \Rightarrow Approached in the vertex-domain
- Formulated as a non-convex optimization problem
 - \Rightarrow Convex relaxation are leveraged
 - \Rightarrow Proposed an alternated minimization algorithm
 - \Rightarrow Stationarity assumptions are incorporated
- Numerical evaluation over synthetic and real-world graphs
 ⇒ Comparison with TLS-SEM
- Future research directions include
 - \Rightarrow Establishing theoretical guarantees
 - \Rightarrow Extension to other GSP tasks