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Network science and GSP

I Data is becoming more heterogeneous and intricate

⇒ Often defined over irregulars domains and networks

⇒ More complex structure demands more complex architectures

I Graph SP: models data structure as a graph [Shuman13], [Sandryhaila13]

⇒ Leverages the graph topology to process the data

⇒ Broadens classical SP to graph signals

Brain network Social network Energy network
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Imperfections in the graph topology

I In GSP it is usually assumed that the graph is perfectly known

I In practical cases the graph contains errors

⇒ Perturbations and observational noise in explicit networks

⇒ Imperfections derived of graphs learned from the data

I Ignored errors will hinder the performance of GSP models

⇒ Filter identification is particularly sensitive to graph errors

Original graph Added/Removed edges Noisy edges

I This talk: approach the graph FI accounting for topology imperfections
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Preliminaries

I Graph G with N nodes and adjacency A

⇒ Aij = Proximity between i and j

I Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

I Associated with G is the graph-shift operator S ∈ RN×N (e.g. A, L)

⇒ Sij = 0 for i 6= j and (i, j) 6∈ E (local structure in G)

⇒ Diagonalized as S = VΛVT

I Graph filters are defined as H =
∑K−1

k=0 hkSk

⇒ Diagonalized as H = Vdiag(h̃)VT

I Graph signal x is stationary on G if Cx is diagonalized by V

⇒ Cx and S commute CxS = SCx
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Motivation

I In graph FI from input/output pairs we estimate H ∈ RN×N

⇒ Leveraging that it is a polynomial of the GSO

I We observed the perturbed S̄ ∈ RN×N ⇒ S̄ 6= S

⇒ The true S is unknown

I What if we estimate the filter as H =
∑K

k=0 hkS̄k ?

⇒ Error between Sk and S̄k grows with k

True G

Observed G

I Problem: learn H as polynomial of S̄ implies a high estimation error
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1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

|A4 − Ā4|
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Context, and goal

I Limited number of works dealing with robust GSP

⇒ Graphon based perturbation models [Miettinen19]

⇒ Small perturbation analysis of the spectrum of L [Ceci20a]

⇒ Combination of TLS with SEMs (TLS-SEM) [Ceci20b]

⇒ TLS-SEM represented as a specific graph filter HSEM

I Challenges

⇒ Translate errors in G to its spectrum is hard

⇒ Numerical issues in vertex-domain due to high-order polynomials

I Our Goal: identify a graph filter H from M inputs/outputs pairs

⇒ Assuming imperfect knowledge of the GSO

⇒ Obtaining a denoised version of the GSO

I Key: Introduce a graph denoising regularization term
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Robust graph-filter identification

I Let X/Y be the observed N ×M input/output

I Assume that Y = HX + E

I The goal is to estimate H, a graph filter of S, but only S̄ is known

I The usual FI formulation transforms

min
h̃

,V

‖Y−Vdiag(h̃)VTX‖2F

s. t. VVT = I

Proposed robust filter identification (RFI) formulation

min
S∈S,H

‖Y−HX‖2F + λd(S, S̄) + β‖S‖0 s. t. SH = HS

I Perform joint estimation of H and S in vertex domain

I The constraint captures the fact that H is a polynomial of S

I Second term is a distance measure between S̄ and S
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Perturbation model and convex relaxations

Graph perturbation model

I Several types of graph perturbations

I We assume that G is perturbed by adding/deleting edges

⇒ Edges are pertubed independently with a given probability

I We set d(S, S̄) = ‖S− S̄‖0

Convex relaxations

I `1 as convex surrogate for `0
I Constraint SH = HS rewritten as a regularizer

min
S∈S,H

‖Y−HX‖2F + λ‖S− S̄‖1 + β‖S‖1 + γ‖SH−HS‖2F

I Still non-convex, but amenable to alternating optimization
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Alternating optimization algorithm

Step 1: Filter Identification

I Assume Ŝ is known, estimate Ĥ

Ĥ = arg min
H
‖Y−HX‖2F +γ‖ŜH−HŜ‖2F

⇒ LS problem with closed-form solution

Step 2: Graph Denoising

I Assume Ĥ is known, estimate Ŝ

Ŝ=arg min
S∈S

λ‖S− S̄‖1+β‖S‖1+γ‖SĤ−ĤS‖2F

I Convergence is sensitive to the value of γ

⇒ If γ is close to 0 the problems decouple

⇒ If γ is too large convergence to non-robust solution

⇒ Start with small γ and increase it progressively
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Leveraging additional structure

I X and Y can exhibit properties depending on G
⇒ Bandlimited, diffused, stationary

⇒ This information can be leveraged to enhance the performance

I Focus on stationary X and/or Y

min
S∈S,H

‖Y −HX‖2F + λ‖S− S̄‖1 + β‖S‖1 + γ‖SH−HS‖2F

s.t. ‖CY S− SCY ‖F ≤ εY , ‖CXS− SCX‖F ≤ εX ,

⇒ Constraints considered in the graph denoising step

I Filter identification step can be augmented with

⇒ CY H = HCY and CXH = HCX
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Numerical results - Test case 1

I Erdős Rényi (ER) graphs with N = 20 and p = 0.25

I Edge perturbation iid with probability δ = 0.1

I M = 10 input/output observations
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I “FI”: ignores perturbations

I “RFI iter”: iterative RFI algorithm

I “RFI-D”: leverages stationarity

⇒ First Ŝ with γ = 0

⇒ Then Ĥ with large γ

I Clear advantage of robust formulations

I “RFI iter” ignores stationarity and is more sensitive to noise
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Numerical results - Test case 2

I Zachary’s Karate graph used as original GSO

I “RFI-R”: low complexity variant replacing SH = HS with ĈY H = HĈY
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I As M grows, robust models recover a more accurate Ŝ

I Better estimates Ŝ and increasing M improve estimate H

⇒ “RFI-R” performs worse than “RFI-D” since it not using Ŝ
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Numerical results - Test case 3
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I ER graphs as in Test case 1

I M = 200 observations

I “SEM”: Y = HSEMX

I “H”: Y = HX

I TLS-SEM outperform RFI algorithms under “SEM” model

⇒ Only for small perturbation probability

I RFI always outperform TLS-SEM under H model

I Good performance of RFI algorithms for both signal models

⇒ Benefits of more general assumptions
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Conclusions

I Proposed general robust graph filter identification model

⇒ Joint graph denoising and filter identification performed

⇒ Approached in the vertex-domain

I Formulated as a non-convex optimization problem

⇒ Convex relaxation are leveraged

⇒ Proposed an alternated minimization algorithm

⇒ Stationarity assumptions are incorporated

I Numerical evaluation over synthetic and real-world graphs

⇒ Comparison with TLS-SEM

I Future research directions include

⇒ Establishing theoretical guarantees

⇒ Extension to other GSP tasks
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