

Problem Statement and our Contributions

Inferential attacks in Social Learning

Adversaries (which are unaware of the true hypothesis) aim at driving the network beliefs to a wrong hypothesis. In doing so, they construct *fake likelihood functions* to update their beliefs.

In this paper we address the following questions

- When the network is misled? Interplay among:
- Agents' centrality.
- Normal agents' observation models.
- Adversaries' attack strategies.
- How adversaries can mislead the network and what information is required for them to do so? Adversaries can always construct *fake likelihood functions* given that they have access to:
- Overall normal agents' KL divergences weighted by their centrality.
- What happens if adversaries do not have access to this information? • We formulate an optimization problem for adversaries' attack strategy and investigate its performance.

System Model

- Set of agents: $\mathcal{N} = \mathcal{N}^n \bigcup \mathcal{N}^m$, where \mathcal{N}^n : set of normal agents, \mathcal{N}^m : set of adversaries.
- Agents interact over an undirected graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$, where \mathcal{E} includes bidirectional links
- between agents.
- True hypothesis/state: $\theta^* \in \Theta = \{\theta_1, \theta_2\}.$
- Normal agents aim at finding θ^* , while adversaries aim at forcing normal agents' beliefs towards the wrong state ($\Theta \setminus \theta^{\star}$.
- Each agent $k \in \mathcal{N}$ has access to observations $\boldsymbol{\zeta}_{k,i} \in \mathcal{Z}_k$, time $i \geq 1$.
- Beliefs: $\boldsymbol{\mu}_{k,i}(\theta) \in (0,1), k \in \mathcal{N}, \theta \in \Theta$.
- Normal agents follow the *log-linear social learning* protocol [Lalitha et al. '19]:
- Bayesian update step:

$$\boldsymbol{\psi}_{k,i}(\boldsymbol{\theta}) = \frac{L_k(\boldsymbol{\zeta}_{k,i}|\boldsymbol{\theta})\boldsymbol{\mu}_{k,i-1}(\boldsymbol{\theta})}{\sum_{\boldsymbol{\theta}'}L_k(\boldsymbol{\zeta}_{k,i}|\boldsymbol{\theta}')\boldsymbol{\mu}_{k,i-1}(\boldsymbol{\theta}')}, \quad k \in \mathcal{N}^n.$$

Combination step:

$$\boldsymbol{\mu}_{k,i}(\boldsymbol{\theta}) = \frac{\prod_{\ell \in \mathcal{N}_k} \boldsymbol{\psi}_{\ell,i}^{a_{\ell k}}(\boldsymbol{\theta})}{\sum_{\boldsymbol{\theta}'} \prod_{\ell \in \mathcal{N}_k} \boldsymbol{\psi}_{\ell,i}^{a_{\ell k}}(\boldsymbol{\theta}')}, \quad k \in \mathcal{N}'$$

where $a_{\ell k} \in [0, 1]$ is the combination weight assigned by $k \in \mathcal{N}$ to its neighbor $\ell \in \mathcal{N}_k$ satisfying $0 < a_{\ell k} \leq 1$, for all $\ell \in \mathcal{N}_k$, $a_{\ell k} = 0$ for all $\ell \notin \mathcal{N}_k$ and $\sum_{\ell \in \mathcal{N}_k} a_{\ell k} = 1$. • Adversaries' behavior: Instead of step 1 above they follow:

$$\boldsymbol{\psi}_{k,i}(\boldsymbol{\theta}) = \frac{\widehat{L}_k(\boldsymbol{\zeta}_{k,i}|\boldsymbol{\theta})\boldsymbol{\mu}_{k,i-1}(\boldsymbol{\theta})}{\sum_{\boldsymbol{\theta}'}\widehat{L}_k(\boldsymbol{\zeta}_{k,i}|\boldsymbol{\theta}')\boldsymbol{\mu}_{k,i-1}(\boldsymbol{\theta}')}, \quad k \in \mathcal{N}^m.$$

where $\widehat{L}_k(\cdot|\theta)$ are the distorted likelihood functions for adversary k.

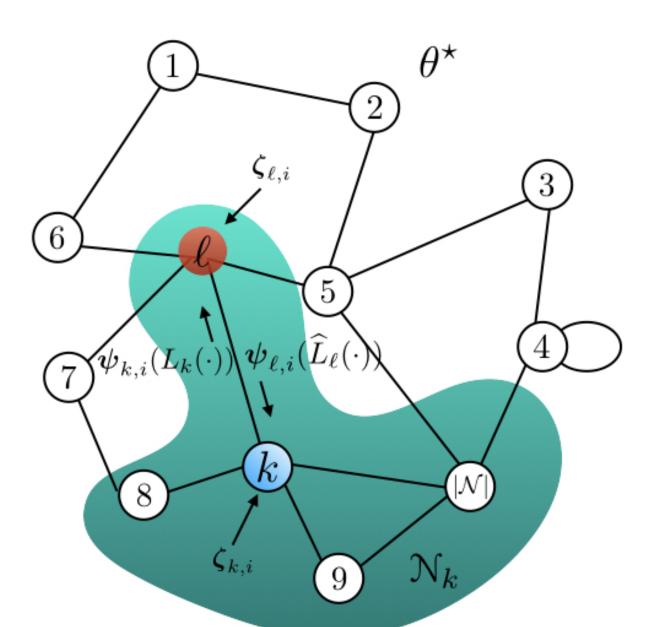


Figure 1. Illustration of the network model and the interactions between a normal agent (k) and an adversary (ℓ) .

This work was supported in part by the Swiss National Science Foundation grant 205121-184999.

konstantinos.ntemos@epfl.ch, virginia.bordignon@epfl.ch, stefan.vlaski@epfl.ch, ali.sayed@epfl.ch

Social Learning Under Inferential Attacks

Konstantinos Ntemos, Virginia Bordignon, Stefan Vlaski, and Ali H. Sayed

School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Modelling Assumptions

(Finiteness of KL divergences)

For any agent $k \in \mathcal{N}$ and for any $\theta \neq \theta^*$, $D_{KL}(L_k(\theta^*)||L_k(\theta^*)|$

(Positive initial beliefs)

 $\mu_{k,0}(\theta) > 0, \forall \theta \in \Theta, k \in \mathcal{N}.$

(Strongly-connected network)

The communication graph is strongly connected (i.e., there always exists a path with positive weights linking any two agents and at least one agent has a self-loop (there is at least one $k \in \mathcal{N}$ with $a_{kk} > 0$).

(Distorted likelihood functions with full support)

For every agent $k \in \mathcal{N}^m$, the distorted likelihood function satisfies $\epsilon \leq \widehat{L}_k(\zeta_{k,i}|\theta)$ for all $\zeta_{k,i} \in \mathcal{Z}_k$, $\theta \in \Theta$, where $0 < \epsilon \ll 1$ is a small positive real constant that satisfies $\epsilon < \min_k \frac{1}{|\mathcal{Z}_l|}$.

When is the network deceived?

Theorem 1 (Belief convergence with adversaries) The following are true:

1. The agents' beliefs converge a.s. to the wrong state if

$$\sum_{k\in\mathcal{N}^n} u_k \mathbb{E}\left\{\log\frac{L_k(\boldsymbol{\zeta}_k|\theta^\star)}{L_k(\boldsymbol{\zeta}_k|\theta)}\right\} = \sum_{k\in\mathcal{N}^n} u_k D_{KL}\left(L_k(\theta^\star))||L_k(\theta)\right) < \sum_{k\in\mathcal{N}^m} u_k \mathbb{E}\left\{\log\frac{\widehat{L}_k(\boldsymbol{\zeta}_k|\theta)}{\widehat{L}_k(\boldsymbol{\zeta}_k|\theta^\star)}\right\}, \quad \theta^\star, \theta\in\Theta, \theta^\star\neq\theta.$$
(4)

2. The agents' beliefs converge a.s. to the true state if

$$\sum_{k \in \mathcal{N}^n} u_k \mathbb{E} \left\{ \log \frac{L_k(\boldsymbol{\zeta}_k | \theta^\star)}{L_k(\boldsymbol{\zeta}_k | \theta)} \right\} = \sum_{k \in \mathcal{N}^n} u_k D_{KL} \left(L_k(\theta^\star)) || L_k(\theta) \right) > \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N}^m} u_k D_{KL} \left(L_k(\theta^\star) \right) || L_k(\theta) = \sum_{k \in \mathcal{N$$

u is the Perron eigenvector associated with the eigenvalue at 1.

Is it always possible to deceive the network?

- Uninformative Probability Mass Functions (PMFs): The likelihood functions are uninformative
- if $L_k(\zeta_k|\theta_1) = L_k(\zeta_k|\theta_2)$ for all $\zeta_k \in \mathbb{Z}_k$, otherwise the likelihood functions are informative.
- Normal sub-network divergence:

$$S_{j} \triangleq \sum_{k \in \mathcal{N}^{n}} u_{k} \mathbb{E} \left\{ \log \frac{L_{k}(\boldsymbol{\zeta}_{k} | \theta_{j})}{L_{k}(\boldsymbol{\zeta}_{k} | \theta_{j'})} \right\}, \quad \theta_{j} = \theta^{\star}, \ j, j' \in \{1, 2\}, j \neq j'.$$
(6)

• To characterize fake PMFs that mislead the network for any hypothesis $\theta^* \in \Theta$ (since adversaries are unaware of the true hypothesis) the system of inequalities resulting from (4) needs to be solved.

We consider the following construction of fake likelihood functions $\widehat{L}(\cdot|\theta_1), \widehat{L}(\cdot|\theta_2)$ for an adversary $k \in \mathcal{N}$:

$$\widehat{L}_{k}(\zeta_{\ell}|\theta_{j}) = \begin{cases} \epsilon_{j'}, & \text{if } \zeta_{k} = \zeta_{k}^{j'} \\ \alpha - \epsilon_{j'}, & \text{if } \zeta_{k} = \\ \epsilon, & \text{otherwise} \end{cases}$$

where
$$\alpha = 1 - (|\mathcal{Z}_k| - 2)\epsilon, j, j' \in \{1, 2\}, j \neq j', \zeta_k^1, \zeta_k^2 \in L_k(\zeta_k^1|\theta_2)L_k(\zeta_k^2|\theta_1).$$

Theorem 2 (Distorted PMFs with known divergences)

There is always a construction of fake likelihood functions of the form (7) that misleads the network for any $\theta^* \in \Theta$, given that there exists at least one adversary with informative PMFs, for sufficiently small ϵ . Adversaries need to know the normal sub-network divergences S_1, S_2 .

What if the normal sub-network divergences (S_1, S_2) are unknown?

Rearranging (4), we can define the following cost function.

$$\mathcal{C}(\theta^{\star}) = \sum_{k \in \mathcal{N}^n} u_k D_{KL}(L_k(\theta^{\star})) || L_k(\theta)) + \sum_{\ell \in \mathcal{N}^m} u_\ell \sum_{\zeta_\ell} L_\ell(\zeta_\ell | \theta^{\star}) \log \frac{\widehat{L}_\ell(\zeta_\ell | \theta^{\star})}{\widehat{L}_\ell(\zeta_\ell | \theta)}, \quad \theta^{\star}, \theta \in \Theta, \theta_1 \neq \theta_2.$$
(8)

- Adversaries can minimize $C(\theta^{\star})$ over $\widehat{L}_{\ell}(\theta_1), \widehat{L}_{\ell}(\theta_2)$, by assuming some prior distribution over the states $\pi = (\pi_{\theta_1}, \pi_{\theta_2})$ (common prior among adversaries).
- Taking expectation over θ^* in (8) leads to the following minimization problem:

$$\min_{\widehat{L}_{\ell}(\theta_{1}),\widehat{L}_{\ell}(\theta_{2})} \sum_{\theta \in \Theta} \pi_{\theta} C(\boldsymbol{\theta}^{\star} = \theta), \quad \ell \in \mathbb{R}$$

s.t. $\widehat{L}_{\ell}(\zeta_{\ell}|\theta) \ge \epsilon, \quad \forall \zeta_{\ell} \in \mathbb{R}$
 $\sum_{\zeta_{\ell} \in \mathbb{Z}_{\ell}} \widehat{L}_{\ell}(\zeta_{\ell}|\theta) = 1, \quad \forall \theta \in \Theta.$

(1)

(2)

(3)

$$(\theta)$$
 is finite.

 $u_{k}\mathbb{E}\Big\{\log\frac{\widehat{L}_{k}(\boldsymbol{\zeta}_{k}|\boldsymbol{\theta})}{\widehat{\boldsymbol{\boldsymbol{\tau}}}\left(\boldsymbol{\boldsymbol{\varepsilon}}\left(\boldsymbol{\boldsymbol{\varepsilon}}\right)\right)}\Big\},\quad\boldsymbol{\theta}^{\star},\boldsymbol{\theta}\in\Theta,\boldsymbol{\theta}^{\star}\neq\boldsymbol{\theta}.$ (5)

(7)

 $\in \mathcal{Z}_k$ are such that $L_k(\zeta_k^1|\theta_1)L_k(\zeta_k^2|\theta_2) \neq 0$

 $\in \mathcal{N}^m$

 $\mathcal{Z}_{\ell}, \theta \in \Theta,$

Attack strategies without any knowledge about the network model

- instead of θ_2 as:
- Define the sets:

$$\mathcal{D}^{1}_{\ell} \triangleq \{ \zeta_{\ell} : Z(\zeta_{\ell}) \ge 0, \quad \ell \in \mathcal{N}^{m} \}$$

$$\mathcal{D}^{2} \triangleq \{ \zeta_{\ell} : Z(\zeta_{\ell}) < 0, \quad \ell \in \mathcal{N}^{m} \}$$

$$(11)$$

$$(12)$$

$$\mathcal{D}_{\ell}^{1} \triangleq \{ \zeta_{\ell} : Z(\zeta_{\ell}) \ge 0, \quad \ell \in \mathcal{N}^{m} \}$$

$$\mathcal{D}_{\ell}^{2} \triangleq \{ \zeta_{\ell} : Z(\zeta_{\ell}) < 0, \quad \ell \in \mathcal{N}^{m} \}$$
(11)
(12)

Theorem 3 **(Distorted PMFs with unknown divergences and mixed confidence)**

If both $\mathcal{D}^1_\ell, \mathcal{D}^2_\ell$ are non-empty sets, then the attack strategy optimizing (9) for every adversary $\ell \in \mathcal{N}^m$ is given by

$$\widehat{L}_{\ell}(\zeta_{\ell}|\theta_{j}) = \begin{cases} \epsilon, & \text{if } \zeta_{\ell} \in \mathcal{D}_{\ell}^{j}, \\ \frac{Z_{\ell}(\zeta_{\ell})(1 - |\mathcal{D}_{\ell}^{j}|\epsilon)}{\sum\limits_{\zeta_{\ell} \notin \mathcal{D}_{\ell}^{j}} Z_{\ell}(\zeta_{\ell})}, & \text{if } \zeta_{\ell} \notin \mathcal{D}_{\ell}^{j} \end{cases}$$
(13)

where $j \in \{1, 2\}$.

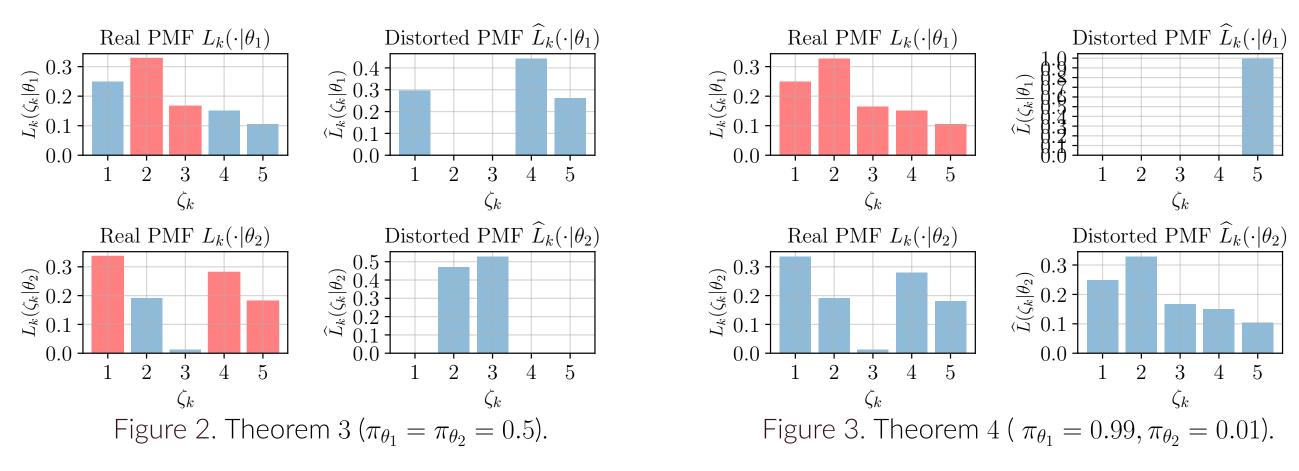
Theorem 4 (Distorted PMFs with unknown divergences and pure confidence

$$(\zeta_{\ell}|\theta_j) = \begin{cases} 1 - \epsilon, \\ \epsilon, \\ \frac{Z}{\sum_{\zeta_{\ell} \in \mathcal{Z}_{\ell}}} \end{cases}$$

where $j \in \{1, 2\}$ and $\zeta_{min} = \arg \min_{\zeta_{\ell}} \{Z_{\ell}(\zeta_{\ell})\}.$

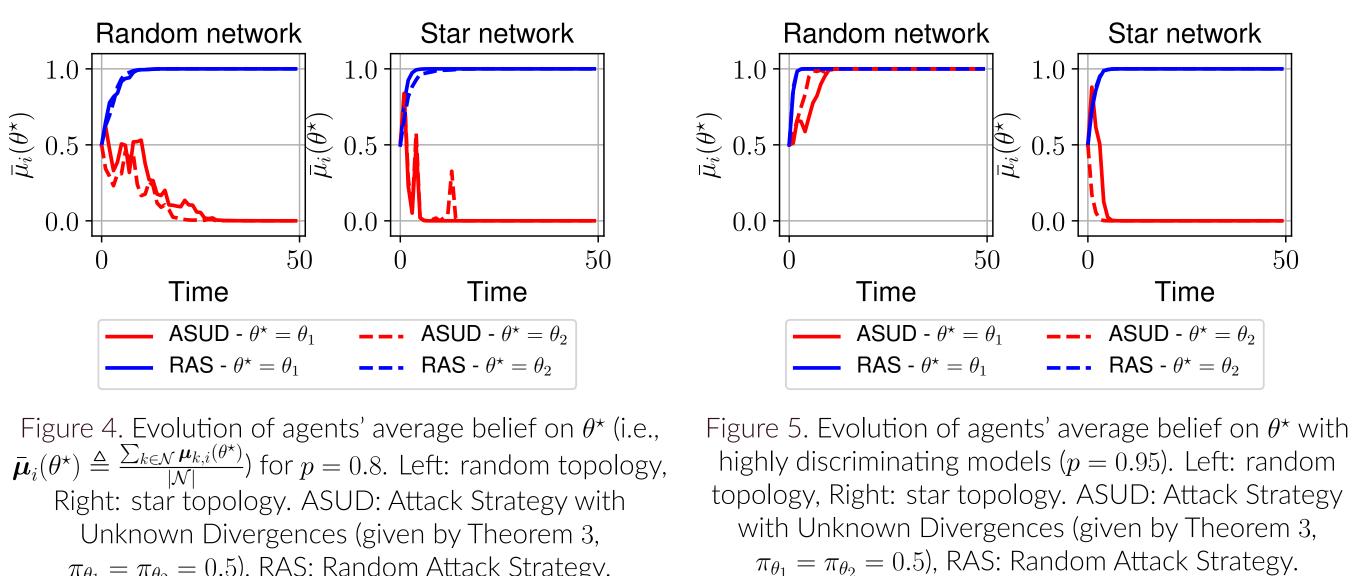
Intuition behind Theorems 3 and 4 - "Flip and inflate" strategy

Examples of the solutions of Theorems 3 and 4 are given with $|\mathcal{Z}_k| = 5$. Red color depicts the higher value of $L_k(\zeta_k|\theta)$ for every observation ζ_k w.r.t. states (i.e., $L_k(\zeta_k|\theta)$ in red are such that $\pi(\theta)L_k(\zeta_k|\theta) > \pi(\theta')L_k(\zeta_k|\theta'), \ \theta \neq \theta'$. We set $\epsilon = 10^{-3}$.



• 15 agents, with 11 normal agents and 4 adversaries interact over a random network topology (strongly connected network) and a star topology (the central agent is adversary). • All agents assign uniform combination weights to their neighbors and we set $\epsilon = 10^{-3}$.

 $k \in \mathcal{N}$ with observation probabilities $L_k(\zeta_1|\theta_1) = L_k(\zeta_2|\theta_2) = p$ and $L_k(\zeta_2|\theta_1) = L_k(\zeta_1|\theta_2) = 1 - p$ for all $k \in \mathcal{N}$.



 $\pi_{\theta_1} = \pi_{\theta_2} = 0.5$), RAS: Random Attack Strategy.

(9)

• Define the coefficients $Z_{\ell}(\zeta_{\ell})$ expressing the *relative confidence* that ζ_{ℓ} resulted from state θ_1

$$Z_{\ell}(\zeta_{\ell}) \triangleq \pi_{\theta_1} L_{\ell}(\zeta_{\ell}|\theta_1) - \pi_{\theta_2} L_{\ell}(\zeta_{\ell}|\theta_2), \quad \zeta_{\ell} \in \mathcal{Z}_{\ell}.$$
(10)

• The solution of opt. problem (9) depends on whether $\mathcal{D}^1_{\ell}, \mathcal{D}^2_{\ell}$ are both non-empty or not.

Let $\mathcal{D}^1_{\ell} = \emptyset$ or $\mathcal{D}^2_{\ell} = \emptyset$. Then, the attack strategy optimizing (9) for an agent $\ell \in \mathcal{N}^m$ is given by

 $(|\mathcal{Z}_{\ell}| - 1)\epsilon, \quad \text{if } \mathcal{D}_{\ell}^{j} = \mathcal{Z}_{\ell}, \, \zeta_{\ell} = \zeta_{min},$ if $\mathcal{D}_{\ell}^{j} = \mathcal{Z}_{\ell}$ and $\zeta_{\ell} \neq \zeta_{min}$, (14) $\frac{Z_{\ell}(\zeta_{\ell})}{Z_{\ell}(\zeta_{\ell})},$ if $\mathcal{D}_\ell^j = \emptyset$

Simulations

• All agents observe the state through a binary symmetric channel, (i.e., $\mathcal{Z}_k = \{\zeta_1, \zeta_2\}$ for all

6-11 June 2021 – Toronto, Ontario, Canada