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Problem Statement and our Contributions

Inferential attacks in Social Learning

Adversaries (which are unaware of the true hypothesis) aim at driving the network beliefs to a

wrong hypothesis. In doing so, they construct fake likelihood functions to update their beliefs.

In this paper we address the following questions

When the network is misled? Interplay among:

Agents’ centrality.

Normal agents’ observation models.

Adversaries’ attack strategies.

How adversaries can mislead the network and what information is required for them to do

so? Adversaries can always construct fake likelihood functions given that they have access

to:

Overall normal agents’ KL divergences weighted by their centrality.

What happens if adversaries do not have access to this information?

We formulate an optimization problem for adversaries’ attack strategy and investigate its

performance.

System Model

Set of agents: N = N n ⋃N m, where N n: set of normal agents, N m: set of adversaries.

Agents interact over an undirected graph G = 〈N , E〉, where E includes bidirectional links

between agents.

True hypothesis/state: θ? ∈ Θ = {θ1, θ2}.
Normal agents aim at finding θ?, while adversaries aim at forcing normal agents’ beliefs

towards the wrong state (Θ \ θ?.

Each agent k ∈ N has access to observations ζk,i ∈ Zk, time i ≥ 1.
Beliefs: µk,i(θ) ∈ (0, 1), k ∈ N , θ ∈ Θ.
Normal agents follow the log-linear social learning protocol [Lalitha et al. ’19]:

1. Bayesian update step:

ψk,i(θ) =
Lk(ζk,i|θ)µk,i−1(θ)∑
θ′ Lk(ζk,i|θ′)µk,i−1(θ′)

, k ∈ N n. (1)

2. Combination step:

µk,i(θ) =
∏

`∈Nk
ψ

a`k
`,i (θ)∑

θ′
∏

`∈Nk
ψ

a`k
`,i (θ′)

, k ∈ N n (2)

where a`k ∈ [0, 1] is the combination weight assigned by k ∈ N to its neighbor ` ∈ Nk
satisfying 0 < a`k ≤ 1, for all ` ∈ Nk, a`k = 0 for all ` /∈ Nk and

∑
`∈Nk

a`k = 1.
Adversaries’ behavior: Instead of step 1 above they follow:

ψk,i(θ) =
L̂k(ζk,i|θ)µk,i−1(θ)∑
θ′ L̂k(ζk,i|θ′)µk,i−1(θ′)

, k ∈ N m. (3)

where L̂k(·|θ) are the distorted likelihood functions for adversary k.

Figure 1. Illustration of the network model and the interactions between a normal agent (k) and an adversary (`).
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Modelling Assumptions

(Finiteness of KL divergences)

For any agent k ∈ N and for any θ 6= θ?, DKL

(
Lk(θ?)||Lk(θ)

)
is finite.

(Positive initial beliefs)

µk,0(θ) > 0, ∀θ ∈ Θ, k ∈ N .

(Strongly-connected network)

The communication graph is strongly connected (i.e., there always exists a path with positive

weights linking any two agents and at least one agent has a self-loop (there is at least one k ∈ N
with akk > 0).
(Distorted likelihood functions with full support)

For every agent k ∈ N m, the distorted likelihood function satisfies ε ≤ L̂k(ζk,i|θ) for all ζk,i ∈ Zk,

θ ∈ Θ, where 0 < ε � 1 is a small positive real constant that satisfies ε < mink
1

|Zk|.

When is the network deceived?

Theorem 1 (Belief convergence with adversaries)

The following are true:

1. The agents’ beliefs converge a.s. to the wrong state if∑
k∈N n

ukE

{
log Lk(ζk|θ?)

Lk(ζk|θ)

}
=

∑
k∈N n

ukDKL

(
Lk(θ?))||Lk(θ)

)
<

∑
k∈N m

ukE

{
log L̂k(ζk|θ)

L̂k(ζk|θ?)

}
, θ?, θ ∈ Θ, θ? 6= θ. (4)

2. The agents’ beliefs converge a.s. to the true state if∑
k∈N n

ukE
{

log Lk(ζk|θ?)
Lk(ζk|θ)

}
=

∑
k∈N n

ukDKL

(
Lk(θ?))||Lk(θ)

)
>

∑
k∈N m

ukE
{

log L̂k(ζk|θ)
L̂k(ζk|θ?)

}
, θ?, θ ∈ Θ, θ? 6= θ. (5)

u is the Perron eigenvector associated with the eigenvalue at 1.
Is it always possible to deceive the network?

Uninformative Probability Mass Functions (PMFs): The likelihood functions are uninformative

if Lk(ζk|θ1) = Lk(ζk|θ2) for all ζk ∈ Zk, otherwise the likelihood functions are informative.

Normal sub-network divergence:

Sj ,
∑

k∈N n

ukE

{
log

Lk(ζk|θj)
Lk(ζk|θj′)

}
, θj = θ?, j, j′ ∈ {1, 2}, j 6= j′. (6)

To characterize fake PMFs that mislead the network for any hypothesis θ? ∈ Θ (since

adversaries are unaware of the true hypothesis) the system of inequalities resulting from (4)

needs to be solved.

We consider the following construction of fake likelihood functions L̂(·|θ1), L̂(·|θ2) for an ad-
versary k ∈ N :

L̂k(ζ`|θj) =


εj′, if ζk = ζj′

k ,

α − εj′, if ζk = ζj
k,

ε, otherwise

(7)

where α = 1 − (|Zk| − 2)ε, j, j′ ∈ {1, 2}, j 6= j′, ζ1
k, ζ2

k ∈ Zk are such that Lk(ζ1
k|θ1)Lk(ζ2

k|θ2) 6=
Lk(ζ1

k|θ2)Lk(ζ2
k|θ1).

Theorem 2 (Distorted PMFs with known divergences)

There is always a construction of fake likelihood functions of the form (7) that misleads the

network for any θ? ∈ Θ, given that there exists at least one adversary with informative PMFs, for

sufficiently small ε. Adversaries need to know the normal sub-network divergences S1, S2.

What if the normal sub-network divergences (S1, S2) are unknown?

Rearranging (4), we can define the following cost function.

C(θ?) =
∑

k∈N n

ukDKL(Lk(θ?))||Lk(θ)) +
∑

`∈N m

u`

∑
ζ`

L`(ζ`|θ?) log L̂`(ζ`|θ?)
L̂`(ζ`|θ)

, θ?, θ ∈ Θ, θ1 6= θ2. (8)

Adversaries can minimize C(θ?) over L̂`(θ1), L̂`(θ2), by assuming some prior distribution over

the states π = (πθ1, πθ2) (common prior among adversaries).

Taking expectation over θ? in (8) leads to the following minimization problem:

min
L̂`(θ1),L̂`(θ2)

∑
θ∈Θ

πθC(θ? = θ), ` ∈ N m (9)

s.t. L̂`(ζ`|θ) ≥ ε, ∀ζ` ∈ Z`, θ ∈ Θ,∑
ζ`∈Z`

L̂`(ζ`|θ) = 1, ∀θ ∈ Θ.

Attack strategies without any knowledge about the network model

Define the coefficients Z`(ζ`) expressing the relative confidence that ζ` resulted from state θ1
instead of θ2 as:

Z`(ζ`) , πθ1L`(ζ`|θ1) − πθ2L`(ζ`|θ2), ζ` ∈ Z`. (10)

Define the sets:

D1
` , {ζ` : Z(ζ`) ≥ 0, ` ∈ N m} (11)

D2
` , {ζ` : Z(ζ`) < 0, ` ∈ N m} (12)

The solution of opt. problem (9) depends on whether D1
` , D2

` are both non-empty or not.

Theorem 3 (Distorted PMFs with unknown divergences and mixed confidence)

If both D1
` , D2

` are non-empty sets, then the attack strategy optimizing (9) for every adversary ` ∈ N m is given by

L̂`(ζ`|θj) =


ε, if ζ` ∈ Dj

` ,

Z`(ζ`)(1 − |Dj
` |ε)∑

ζ` /∈Dj
`

Z`(ζ`)
, if ζ` /∈ Dj

`
(13)

where j ∈ {1, 2}.

Theorem 4 (Distorted PMFs with unknown divergences and pure confidence

Let D1
` = ∅ or D2

` = ∅. Then, the attack strategy optimizing (9) for an agent ` ∈ N m is given by

L̂`(ζ`|θj) =


1 − (|Z`| − 1)ε, if Dj

` = Z`, ζ` = ζmin,

ε, if Dj
` = Z` and ζ` 6= ζmin,

Z`(ζ`)∑
ζ`∈Z`

Z`(ζ`)
, if Dj

` = ∅
(14)

where j ∈ {1, 2} and ζmin = arg minζ`
{Z`(ζ`)}.

Intuition behind Theorems 3 and 4 - “Flip and inflate” strategy

Examples of the solutions of Theorems 3 and 4 are given with |Zk| = 5. Red color

depicts the higher value of Lk(ζk|θ) for every observation ζk w.r.t. states (i.e., Lk(ζk|θ)
in red are such that π(θ)Lk(ζk|θ) > π(θ′)Lk(ζk|θ′), θ 6= θ′). We set ε = 10−3.
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Figure 2. Theorem 3 (πθ1 = πθ2 = 0.5).
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Figure 3. Theorem 4 ( πθ1 = 0.99, πθ2 = 0.01).

Simulations

15 agents, with 11 normal agents and 4 adversaries interact over a random network topology

(strongly connected network) and a star topology (the central agent is adversary).

All agents assign uniform combination weights to their neighbors and we set ε = 10−3.

All agents observe the state through a binary symmetric channel, (i.e., Zk = {ζ1, ζ2} for all

k ∈ N ) with observation probabilities Lk(ζ1|θ1) = Lk(ζ2|θ2) = p and

Lk(ζ2|θ1) = Lk(ζ1|θ2) = 1 − p for all k ∈ N .

0 50
Time

0.0

0.5

1.0

µ̄
i(
θ?

)

Random network

0 50
Time

0.0

0.5

1.0

µ̄
i(
θ?

)

Star network

ASUD - θ? = θ1

RAS - θ? = θ1

ASUD - θ? = θ2

RAS - θ? = θ2

Figure 4. Evolution of agents’ average belief on θ? (i.e.,

µ̄i(θ?) ,
∑

k∈N µk,i(θ?)
|N | ) for p = 0.8. Left: random topology,

Right: star topology. ASUD: Attack Strategy with

Unknown Divergences (given by Theorem 3,
πθ1 = πθ2 = 0.5), RAS: Random Attack Strategy.
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Figure 5. Evolution of agents’ average belief on θ? with

highly discriminating models (p = 0.95). Left: random
topology, Right: star topology. ASUD: Attack Strategy

with Unknown Divergences (given by Theorem 3,
πθ1 = πθ2 = 0.5), RAS: Random Attack Strategy.
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