

TIME-DOMAIN CONCENTRATION AND APPROXIMATION OF COMPUTABLE BANDLIMITED SIGNALS

Introduction

- Bandlimited signals play a crucial role in signal processing.
- Bandlimited signals: perfect concentration in the frequency domain; cannot simultaneously be perfectly concentrated in the time-domain.
- We consider the Bernstein spaces \mathcal{B}^{p}_{π} : bandlimited signals with finite L^{p} -norm as characteristic time-domain behavior.
- Most signal processing is done on digital hardware (e.g. FPGAs, DSPs, CPUs), and hence questions of computability arise.
- We study the time-domain concentration of bandlimited signals from a computational point of view \rightarrow Concept of Turing computability.
- One of the key concepts of computability: effective, i.e., algorithmic control of the approximation error.

Turing Machines

- A Turing machine is an abstract device that manipulates symbols on a strip of tape according to certain rules.
- Although the concept is very simple, a Turing machine is capable of simulating any given algorithm.
- Turing machines have no limitations with respect to memory or computing time, and hence provide a theoretical model that describes the fundamental limits of any practically realizable digital computer.

Computability Basics

A sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ is called computable sequence if there exist recursive functions a, b, s from \mathbb{N} to \mathbb{N} such that $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$r_n = (-1)^{s(n)} \frac{a(n)}{b(n)}, \qquad n \in \mathbb{N}$$

A recursive function is a function, mapping natural numbers into natural numbers, that is built of simple computable functions and recursions. Recursive functions are computable by a Turing machine.

A real number x is said to be computable if there exist a computable sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have $|x - r_n| \leq 2^{-M}$ for all $n \geq \xi(M)$. \mathbb{R}_c : set of computable real numbers.

Notation

 $L^{p}(\mathbb{R}), 1 \leq p \leq \infty$: the usual L^{p} -spaces.

Bernstein space \mathcal{B}^{p}_{σ} ($\sigma > 0, 1 \leq p \leq \infty$): space of all functions of exponential type at most σ , whose restriction to the real line is in $L^{p}(\mathbb{R})$. Norm: L^{p} -norm on the real line. We call a signal in \mathcal{B}^{p}_{σ} bandlimited signal (bandwidth σ).

 \mathcal{B}^2_{σ} : frequently used space of bandlimited functions with bandwidth σ and finite energy. $\mathcal{B}^{\infty}_{\sigma,0}$: space of all functions in $\mathcal{B}^{\infty}_{\sigma}$ that vanish at infinity.

We have $\mathcal{B}_{\sigma}^r \subsetneq \mathcal{B}_{\sigma}^s \subsetneq \mathcal{B}_{\sigma,0}^\infty$ for all $1 \leq r < s < \infty$.

SPTM-18: Sampling Theory, Analysis and Methods

Computable Functions

We call a function *f* elementary computable if there exists a natural number L and a sequence of computable numbers $\{c_k\}_{k=-l}^L$ such that

$$f(t) = \sum_{k=-L}^{L} c_k \frac{\sin(\pi(t-t))}{\pi(t-t)}$$

Definition: A signal in $f \in \mathcal{B}^{p}_{\pi}$, $p \in [1, \infty) \cap \mathbb{R}_{c}$, is called computable in \mathfrak{B}^{p}_{π} if there exists a computable sequence of elementary computable functions $\{f_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

 $\|\boldsymbol{f}-\boldsymbol{f}_n\|_{\mathcal{B}^p_{\pi}} \leqslant \frac{1}{2^M}$

for all $n \ge \xi(M)$.

 \mathfrak{CB}^{p}_{π} , $p \in [1, \infty) \cap \mathbb{R}_{c}$ set of all signals in \mathfrak{B}^{p}_{π} that are computable in \mathfrak{B}^{p}_{π} . $\mathcal{CB}_{\pi 0}^{\infty}$: set of all signals in $\mathcal{B}_{\pi 0}^{\infty}$ that are computable in $\mathcal{B}_{\pi 0}^{\infty}$.

• We can approximate any signal f by an elementary computable signal, where we have an "effective", i.e. computable control of the approximation error.

Control of the approximation error

- Advantages: intuitively clear, very general, easy to perform analytical calculations.
- Drawbacks: difficult to answer questions about the time concentration behavior, connection to the usual definition of a computable continuous function unclear.

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is a called computable continuous function if

- **1.** *f* maps every computable sequence $\{t_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$ into a computable sequence $\{f(t_n)\}_{n \in \mathbb{N}}$ of real numbers.
- **2.** there exists a recursive function $d: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that for all $L, M \in \mathbb{N}$ we have: $|t_1 - t_2| \leq 1/d(L, M)$ implies $|f(t_1) - f(t_2)| \leq 2^{-M}$ for all $t_1, t_2 \in [-L, L]$.

Paper Number: 3800 Holger Boche and Ullrich J. Mönich Technische Universität München Lehrstuhl für Theoretische Informationstechnik

Time Concentration

"Amount" of the signal f in [-L]

Time concentration on [-L, L]:

• The smaller the value, the more concentrated is the signal. • When is the convergence effective?

Observation: If $f \in CB_{\pi}^{p}$, $p \in [1, \infty) \cap \mathbb{R}_{c}$, then

- $\|f\|_{\mathcal{B}^p_{\pi}} \in \mathbb{R}_c.$
- is effective.
- concentration behavior.

Definition of a computable bandlimited signal using the idea of effective time concentration:

computable time-domain concentration if

- 1. f is a computable continuous function, and
- we have

for all $L \ge \xi(M)$.

 \mathcal{CT}^{p}_{π} , $p \in [1, \infty) \cap \mathbb{R}_{c}$: set of such functions. For $p = \infty$, i.e., signals $f \in \mathcal{B}_{\pi,0}^{\infty}$, we use an analogous definition, with $|||f||_{\mathcal{B}^{\infty}_{\pi,0}} - \max_{|t| \leq L} |f(t)| \, \mathrm{d}t| \leq 1/2^{M}.$

• For $p \in (1, \infty) \cap \mathbb{R}_c$, the sets \mathcal{CT}^p_{π} and \mathcal{CB}^p_{π} coincide. • No longer true for p = 1 and $p = \infty$.

Theorem 2: Let $p \in (1, \infty) \cap \mathbb{R}_c$. Then we have $f \in \mathcal{CB}_{\pi}^p$ if and only if $f \in \mathcal{B}^p_{\pi}$, f is a computable continuous function, and $\|f\|_{\mathcal{B}^p_{\pi}} \in \mathbb{R}_c$.

• Simple characterization of CB^{p}_{π} signals. • No longer true for p = 1 and $p = \infty$.

L, L]:
$$\int_{-L}^{L} |f(t)|^{p} dt$$

: $\int_{-\infty}^{\infty} |f(t)|^{p} dt - \int_{-L}^{L} |f(t)|^{p} dt = \int_{|t|>L} |f(t)|^{p} dt$

• Since $\{\int_{|t| \leq L} |f(t)|^p dt\}_{L \in \mathbb{N}}$ is monotonically increasing, the convergence

• For $f \in CB^p_{\pi}$ we have an algorithmic description of the time

Main Result

Definition: We say that a signal $f \in \mathcal{B}^{p}_{\pi}$, $p \in [1, \infty) \cap \mathbb{R}_{c}$ has an effectively

2. there exists a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$

$$\int_{\pi}^{p} - \int_{-L}^{L} |f(t)|^{p} \mathrm{d}t \leqslant \frac{1}{2^{M}}$$

Theorem 1: Let $p \in (1, \infty) \cap \mathbb{R}_c$. Then we have $\mathcal{CT}^p_{\pi} = \mathcal{CB}^p_{\pi}$.

ICASSP 2021

