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Introduction

Compressed Sensing
• In Compressed Sensing (CS) we take M possibly noisy linear

measurements {yi}mi=1 of an N-dimensional K -sparse (has at
most K nonzero components) vector x, according to

y = Ax (+w),

where w is independent and identically distributed (i.i.d.) addi-
tive noise.

•Recovery is possible if A ∈ Rm×N satisfies the Restricted Isom-
etry Property (RIP).

•Matrices whose elements are randomly drawn from a
(sub-)Gaussian distribution satisfy RIP with high probability.

Why LAMP?
•AMP is very appealing for its efficiency and accurate recovery.

• It approximates the computationally intractable high-
dimensional integration involved with calculating

x̂ ≈ E{x | y}.

• Its parameters can be learned from training data ⇒ LAMP.

• LAMP significantly improves upon both LISTA and AMP.

• Is the chosen parametric family of denoisers good for the source
prior? - We don’t know!

Main Idea
•We model the source signal prior as an independent and identi-

cally distributed (i.i.d.) Gaussian-mixture (GM) distribution.

•We adopt the optimal denoiser function that would minimize
MSE had the assumed GM prior match the true unknown prior.

•The parameters of the GM are learned from training data.

•We, therefore, examine a general-purpose denoiser within the
LAMP algorithm.

Why GM?
•The resulting denoiser function η(·), and it’s derivative d

drη(·)
can be calculated analytically.

• If the overall objective is to minimize MSE, a good approxima-
tion of a discrete component in the source prior is a Gaussian
distribution with matching mean and a very small variance.

•A Gaussian mixture can model a variety of continuous distribu-
tions.

Learned Gaussian-mixture AMP

The Steps of LAMP
•The LAMP algorithm is initialized (at t = 0) according to

x̂0 = 0N×1, z(0) = 0m×1, B.

•At every iteration t = 1, 2, ...,Tmax, the algorithm computes

r(t) = x(t−1) + Bz(t),

x(t+1) = η
(
r(t); σ2(t)

, Θ(t)
)

,

b(t) =
1

m

N∑
i=1

∂[η
(
r(t),σ2(t)

, Θ(t)
)

]i

∂ri
,

z(t) = y − Ax(t−1) + b(t−1)z(t−1).

•B is the learned weight (filter) matrix.

• σ2(t)
is the effective noise variance at the t-th layer, which can

be estimated with σ(t) = ‖z(t)‖2/
√
m.

•The denoiser function η(·, ·, ·) that minimizes MSE is given by

η(r (t)
n ; σ(t), Θ(t)) = E[xn | r(t)

n = r (t)
n ; σ(t), Θ(t)].

•The Onsager term allows for the decoupled measurement model,

i.e., r(t) ∼ x + v(t), where v(t) ∼ N (0N, σ2(t)
IN).

GM prior distribution
•We assume GM prior distribution:

p(xn ; ΘGM) =
L∑

l=1

ωl N (xn;µl ,σ
2
l ),

where
∑L

l=1 ωl = 1, 0 ≤ ωl ≤ 1, ∀l ∈ [L].

•⇒ the conditional pdf of xn given r
(t)
n can be written as

p(xn | rn; σ2, ΘGM) =
L∑

l=1

β̄n,l N (xn; γn,l , νn,l).

Learning the L-GM-AMP Parameters
•A network with Tmax layers which has Nm + 3LTmax tunable

parameters B ∪Ll=1 {ωl ,µl ,σ
2
l }.

Algorithm 1: Tied LAMP-GMP parameter learning

B = AT , Θ
(0)
GM = ∪Ll=1{ωl ,0,µl ,0,σ2

l ,0};
while t ≤ Tmax do

Initialize Θ
(t)
GM = Θ

(t−1)
GM ;

Learn Θ
(t)
GM with fixed Θ

(t−1)
tied ;

Refine Θ
(t)
tied = {B,∪tt ′=1Θ

(t ′)
GM};

end

Numerical Results

Simulation Setup
•The entries of the sensing matrix A are drawn once indepen-

dently from a zero-mean Gaussian distribution with variance
1/m, and kept fixed.

•The per-iteration NMSE is used as the performance metric

NMSE(t) = E
[
‖x̂(t) − x‖2

2

∣∣A]/E[‖x‖2
2

]
.

•Given δ and ε, we take m = δN measurements of a 500-long
εN-sparse source vector.

•Noise power is calculated as SNR = E
[
‖y‖2

]
/E
[
‖w‖2

]
= ε

δ
σ2x
σ2w

.

•The network is trained using Adam optimizer.
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Results
• L-GM-AMP matches the performance of matched LAMP.

• L-GM-AMP does not suffer from over-parametrization.

• L-GM-AMP is also capable of learning discrete priors.
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Conclusion

•Although reminiscent of Borgerdings LAMP [1], it differs in the
adoption of a universal plug and play denoising function.

• L-GM-AMP algorithm achieves state-of-the-art performance of-
fered by (L)AMP with perfect knowledge of the source prior.

[1] M. Borgerding, P. Schniter, and S. Rangan, AMP-inspired deep networks
for sparse linear inverse problems, IEEE Transactions on Signal Processing, vol.
65, no. 16, pp. 42934308, Aug 2017.


