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Introduction

Compressed Sensing

o In Compressed Sensing (CS) we take M possibly noisy linear
measurements {y;}™, of an N-dimensional K-sparse (has at
most K nonzero components) vector X, according to

y = Ax (+w),
where w is independent and identically distributed (i.i.d.) addi-

tive noise.

® Recovery is possible if A € R™" satisfies the Restricted Isom-
etry Property (RIP).

® Matrices whose elements are randomly drawn from a
(sub-)Gaussian distribution satisfy RIP with high probability.

Why LAMP?

e AMP is very appealing for its efficiency and accurate recovery.

e |t approximates the computationally intractable high-
dimensional integration involved with calculating

X~ E{x|y}

® [ts parameters can be learned from training data = LAMP.
e L AMP significantly improves upon both LISTA and AMP.

® |s the chosen parametric family of denoisers good for the source
orior? - We don't know!

Main ldea

® \We model the source signal prior as an independent and identi-
cally distributed (i.i.d.) Gaussian-mixture (GM) distribution.

e \We adopt the optimal denoiser function that would minimize
MSE had the assumed GM prior match the true unknown prior.

e [he parameters of the GM are learned from training data.

e \We, therefore, examine a general-purpose denoiser within the

LAMP algorithm.

Why GM?
® The resulting denoiser function 7(-), and it’s derivative <7(-)
can be calculated analytically.

e |[f the overall objective is to minimize MSE, a good approxima-
tion of a discrete component in the source prior is a Gaussian
distribution with matching mean and a very small variance.

e A Gaussian mixture can model a variety of continuous distribu-
tions.
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Learned Gaussian-mixture AMP

The Steps of LAMP
® The LAMP algorithm is initialized (at t = 0) according to

)'ZO — ON><11 Z(O) — Om><1; B.
® At every iteration t = 1,2, ..., T the algorithm computes
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® B is the learned weight (filter) matrix.

o 02" is the effective noise variance at the t-th layer, which can

be estimated with o) = ||z9)||,/\/m.
® The denoiser function 7(-, -, -) that minimizes MSE is given by

n(r9: 50, 0 = Elx, | ) = A0: () g0

n 1 n

® The Onsager term allows for the decoupled measurement model,
ie. rlt) ~ x + v(t) where vit) ~ N (Oy, Uz(t)l/v).

GM prior distribution

e \We assume GM prior distribution:

L

p(xn; Ocm) = ZW/N(Xni i 0/2)'

=1
where Zlel w=10<w <1, VIell]
(t)

® = the conditional pdf of x, given r;,’ can be written as

L
p(xa| roi %, ©OcM) = D Bt N (Xai Yats V).
[=1

Learning the L-GM-AMP Parameters

e A network with T, layers which has Nm + 3LT,.x tunable
parameters B U}, {w), i1, 07}

Algorithm 1: Tied LAMP-GMP parameter learning

0
B=AT, 0 = UL {wi o, Tio}s
while t < T,,,, do

nitialize ©F), = @1,

_earn @(thz,l with fixed @Eite;l);

Refine @gi?d = {B, Ui,zl@g&};
end

Numerical Results

Simulation Setup

® The entries of the sensing matrix A are drawn once indepen-

dently from a zero-mean Gaussian distribution with variance
1/m, and kept fixed.

® The per-iteration NMSE is used as the performance metric
NMSE® = E[||x") — x|3| A]/E[|Ix]|3].

e Given 0 and ¢, we take m = 0N measurements of a 500-long
e N-sparse source vector.

e Noise power is calculated as SNR = E[HyHQ}/E[HWHQ] =

® [he network is trained using Adam optimizer.
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e | -GM-AMP matches the performance of matched LAMP.

e | -GM-AMP does not suffer from over-parametrization.

e | -GM-AMP is also capable of learning discrete priors.
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Conclusion

e Although reminiscent of Borgerdings LAMP [1], it differs in the
adoption of a universal plug and play denoising function.

o | -GM-AMP algorithm achieves state-of-the-art performance of-
fered by (L)AMP with perfect knowledge of the source prior.

[1] M. Borgerding, P. Schniter, and S. Rangan, AMP-inspired deep networks

for sparse linear inverse problems, IEEE Transactions on Signal Processing, vol.
65, no. 16, pp. 42934308, Aug 2017.



