

Presentation Structure

- Motivation.
- Sung vs Spoken Speech.
- Recognition Experiments.

Presentation Structure

- Motivation.
- Sung vs Spoken Speech.
- Recognition Experiments.

NUS-48E Sung and Spoken Lyrics Corpus [1]

- Sung and Spoken Lyrics.
- 12 speakers.
 - 6 females (3 soprano, 3 alto).
 - \circ $\,$ 6 males (2 tenor, 3 baritone, 1 bass).
 - 48 English songs (20 unique).
- 25,474 phone instances.
- American and Singapore accents.
 - Accent variation is neutralised when singing [2].
 - Move towards American pronunciation [3].

^[1] Z. Duan, H. Fang, B. Li, K. C. Sim, and Y. Wang, "The NUS sung and spoken lyrics corpus: A quantitative comparison of singing and speech," in Proc. APSIPA ASC, 2013

 ^[2] A. Gibson, "Production and perception of vowels in New Zealand popular music," MPhil Thesis, Auckland University, NewZealand, 2010.
[3] M. Konert-Panek, "Overshooting americanisation. accent stylisation in pop singing acoustic properties of the bath and trap vowels in focus," Research in Language, vol. 15, pp. 371–384, 12 2017

Speech Sung Corpus

DSing sung speech dataset [1] based on the Smule Sing! 300x30x2 corpus [2].

- Train sets:
 - DSing1 (GB).
 - DSing3 (GB + AU + US).
 - DSing30 (All 30 countries).

Set	Singers	Songs	Utterances	Hours 15.1 44.7	
DSing1	352	434	8,794		
DSing3	1,050	1,343	25,526		
DSing30	3,205	4,324	81,092	149.1	

- Test sets:
 - Development (GB).
 - Evaluation (GB).

Set	Singers	Songs	Utterances	Hours	
dev 40 eval 43		66	482	0.7	
		70	480	0.8	

[1] Roa Dabike, G and Barker, J. "Automatic lyric transcription from Karaoke vocal tracks: Resources and a Baseline System". Interspeech. 2019 [2] Smule Sing!300x30x2 Dataset, "https://ccrma.standford.edu/damp/", accessed September 2018.

Values express percentage of Word Error Rate (WER)

Methodology

- 1. Experiment 1
 - a. MFCC + i-vectors
 - b. Pitch
 - c. Degree of voicing

- 2. Experiment 2
 - a. MFCC + i-vectors
 - b. Pitch
 - c. Degree of voicing
 - d. Voice quality
 - i. Jitter
 - ii. Shimmer
 - iii. HNR

Voice Quality = Jitter, Shimmer and HNR

ASR Results

Evaluation measured in Word Error Rate

- Pitch + Voicing + VQ obtained best performance in DSing1 and DSing3 (p-value < 0.05).
- For the DSing30, no significant improvement was obtained.

Experiment	DSing1		DSing3		DSing30		
	3-gram	4-gram		3-gram	4-gram	3-gram	4-gram
Baseline	43.02 ± 0.55	38.14 ± 0.58	2	8.13 ± 0.14	24.40 ± 0.26	$ 22.82 \pm 0.21$	19.88 ± 0.34
+ Pitch + Voicing	40.99 ± 0.49	36.77 ± 0.45	2	8.05 ± 0.24	24.27 ± 0.21	$ 23.23 \pm 0.28$	19.87 ± 0.12
+ Voice Quality	41.17 ± 0.30	36.70 ± 0.46	2	7.82 ± 0.26	23.76 ± 0.27	$ 22.97 \pm 0.32$	19.60 ± 0.21
			ſ				
Voice Quality = Ji	tter, Shimmer ar	nd HNR					

Voice Quality = Jitter, Shimmer and HNR

ASR Results

Evaluation measured in Word Error Rate

- Pitch + Voicing + VQ obtained best performance in DSing1 and DSing3 (*p*-value < 0.05).
- For the DSing30, no significant improvement was obtained.

Experiment	DSing1		DSing3		DSing30	
	3-gram	4-gram	3-gram	4-gram	3-gram	4-gram
Baseline	43.02 ± 0.55	38.14 ± 0.58	28.13 ± 0.14	24.40 ± 0.26	$ 22.82 \pm 0.21$	19.88 ± 0.34
+ Pitch + Voicing	40.99 ± 0.49	36.77 ± 0.45	28.05 ± 0.24	24.27 ± 0.21	23.23 ± 0.28	19.87 ± 0.12
+ Voice Quality	41.17 ± 0.30	36.70 ± 0.46	27.82 ± 0.26	23.76 ± 0.27	22.97 ± 0.32	19.60 ± 0.21

Voice Quality = Jitter, Shimmer and HNR

Thank you for Watching