Wiener Filter on Meet/Join Lattices

Bastian Seifert and Chris Wendler and Markus Püschel

IEEE ICASSP 2021

Computer Science

Shumann 2012 Sandryhaila 2013 **New Discrete Lattice SP**

Signals indexed by a meet/join lattice Instantiation of algebraic signal processing theory ICASSP 2019

Goal shift, convolution/filtering, Fourier transform, frequency response, sampling, **for lattice signals**

Meet Semilattice

Finite set L with **partial order** \leq and **meet operation** $x \wedge y$ (greatest lower bound)

Meet Semilattice

Finite set L with **partial order** \leq and **meet operation** $x \wedge y$ (greatest lower bound)

For example, $c \wedge d = g$

Meet Semilattice

Finite set L with **partial order** \leq and **meet operation** $x \wedge y$ (greatest lower bound)

For example, $c \wedge d = g$

Powerset Lattice

Partial order \subseteq , meet \cap

Join Semilattice

Analogous

Discrete Lattice Signal Processing

Discrete Lattice Signal Processing

Signal $\mathbf{s} = (s_x)_{x \in L} \in \mathbb{R}^n$

Concrete Example

Discrete Lattice Signal Processing

Spectrum Auctions

Spectrum Auctions

Spectrum Auctions

Multiset lattice

Elements: Submultisets of multiset M Partial Order: \subseteq Meet: \cap

Multiset of licenses = lattice Bidder = signal of values for each submultiset of licenses

Rankings

Rankings

Permutation Lattice

Elements: Permutations of length n b covers a: $(b_1, ..., b_n) = (a_1, ..., a_{i+1}, a_i, ..., a_n)$ Partial Order and Meet: Derived from cover graph

Filters: Linear Shift Invariant Systems

Shift(s) by $q \in L$ $T_q \mathbf{s} = (s_{x \wedge q})_{x \in L}$

Convolution

$$\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q}\right)_{x \in L}$$

λ.

Filter $\mathbf{h} = (h_q)_{q \in L}$ indexed by Shift Invariance \checkmark lattice

Filters: Linear Shift Invariant Systems

lattice

Shift(s) by $q \in L$ $T_q \mathbf{s} = (s_{x \wedge q})_{x \in L}$

Shift Invariance 🗸

Convolution $\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q} \right)_{x \in L}$ Filter $\mathbf{h} = (h_q)_{q \in L}$ indexed by Fourier Transform diagonalizes all shifts and filters

Filters: Linear Shift Invariant Systems

Shift(s) by $q \in L$ $T_q \mathbf{s} = (s_{x \wedge q})_{x \in L}$

Convolution

$$\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q}\right)_{x \in L}$$

Filter $\mathbf{h} = (h_q)_{q \in L}$ indexed by Shift Invariance \checkmark lattice **Fourier Transform** diagonalizes all shifts and filters

As matrix (Discrete Lattice Transform) $DLT = [\mu(x, y)]_{y, x \in L}$

Algebraic Lattice Theory

Comparison Graph DSP

Graph DSP

Signals indexed by vertices of a graph

Shift captures adjacency structure

One generating shift (adjacency or Laplacian)

Shift not always diagonalizable (digraphs)

New Discrete Lattice SP

Signals indexed by a meet/join lattice

 s_d s_b s_c s_f s_g

Shifts capture partial order structure

Several generating shifts (one per 'maximal' element)

Shifts always diagonalizable

Classical SP Wiener Filter

Our contribution Wiener Filter for Lattice signals

Filter Coefficients $\mathbf{h} = (h_0, \dots, h_N)$

$$\min_{\mathbf{h}} \|H\mathbf{y} - \mathbf{s}\|_2^2$$

Classical SP

$$H \cdot y = \sum_{k=0}^{N} h_k T^k y$$

Filter Coefficients $\mathbf{h} = (h_0, \dots, h_N)$

$$\min_{\mathbf{h}} \|H\mathbf{y} - \mathbf{s}\|_2^2$$

Lattice SP $H \cdot y = \sum_{k=0}^{N} h_k T_{ep}^k y$

ilter Coefficients
$$\mathbf{h} = (h_0, \dots, h_N)$$
$$\min_{\mathbf{h}} ||H\mathbf{y} - \mathbf{s}||_2^2$$

Energy-Preserving Shift

DLT $\cdot T_q \cdot \text{DLT}^{-1} = \text{diag}(i_y \mid i_y = 1 \text{ if } y \le q, i_y = 0 \text{ else })$ DLT $\cdot T_q \cdot \text{DLT}^{-1} = p_q(\Lambda)$

Diagonal, entries pairwise different

Energy-Preserving Shift

DLT $\cdot T_q \cdot \text{DLT}^{-1} = \text{diag}(i_y \mid i_y = 1 \text{ if } y \le q, i_y = 0 \text{ else })$ DLT $\cdot T_q \cdot \text{DLT}^{-1} = p_q(\Lambda)$

Diagonal, entries pairwise different

Choose $\Lambda_{\rm ep} = {\rm diag}(\exp(2\pi \,\mathrm{i}\, k/|L| \mid k = 0, \dots, |L| - 1)$

Energy-preserving shift

 $T_{\rm ep} = {\rm DLT}^{-1} \Lambda_{\rm ep} {\rm DLT}$

Preserves energy $\|T_{\mathrm{ep}}\mathbf{s}\|_2 = \|\widehat{\mathbf{s}}\|_2$

For Graphs: Gavili, Zhang 2017

Results (Spectrum Auctions)

Lattice Signal Processing

Convolution $\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q} \right)_{x \in L}$

Fourier Transform

 $\widehat{s}_y = \sum_{x \le y} \mu(x, y) s_x$

https://acl.inf.ethz.ch/research/ASP/

Wiener Filter for Lattice Signals

Applications

