

End-to-End Audio-Visual Speech Recognition with Conformers

Pingchuan Ma, Stavros Petridis, Maja Pantic

Imperial College London, UK

Motivation

- Audio-Visual Speech Recognition is useful in noisy environments where the audio signal is corrupted.
- Limitations
 - It is common in the literature to have a two-step approach where they first extract visual/audio features and then do recognition.

Contributions

CTC/Attention[3]

Ours

7	
WER	
63.5	
50.9	
46.2	
42.4	
37.9	
	WER 63.5 50.9 46.2 42.4

Hand-crafted	acoustic	features	
--------------	----------	----------	--

LSTM encoder and decoder

Two-step approach

RNN-based Language Model

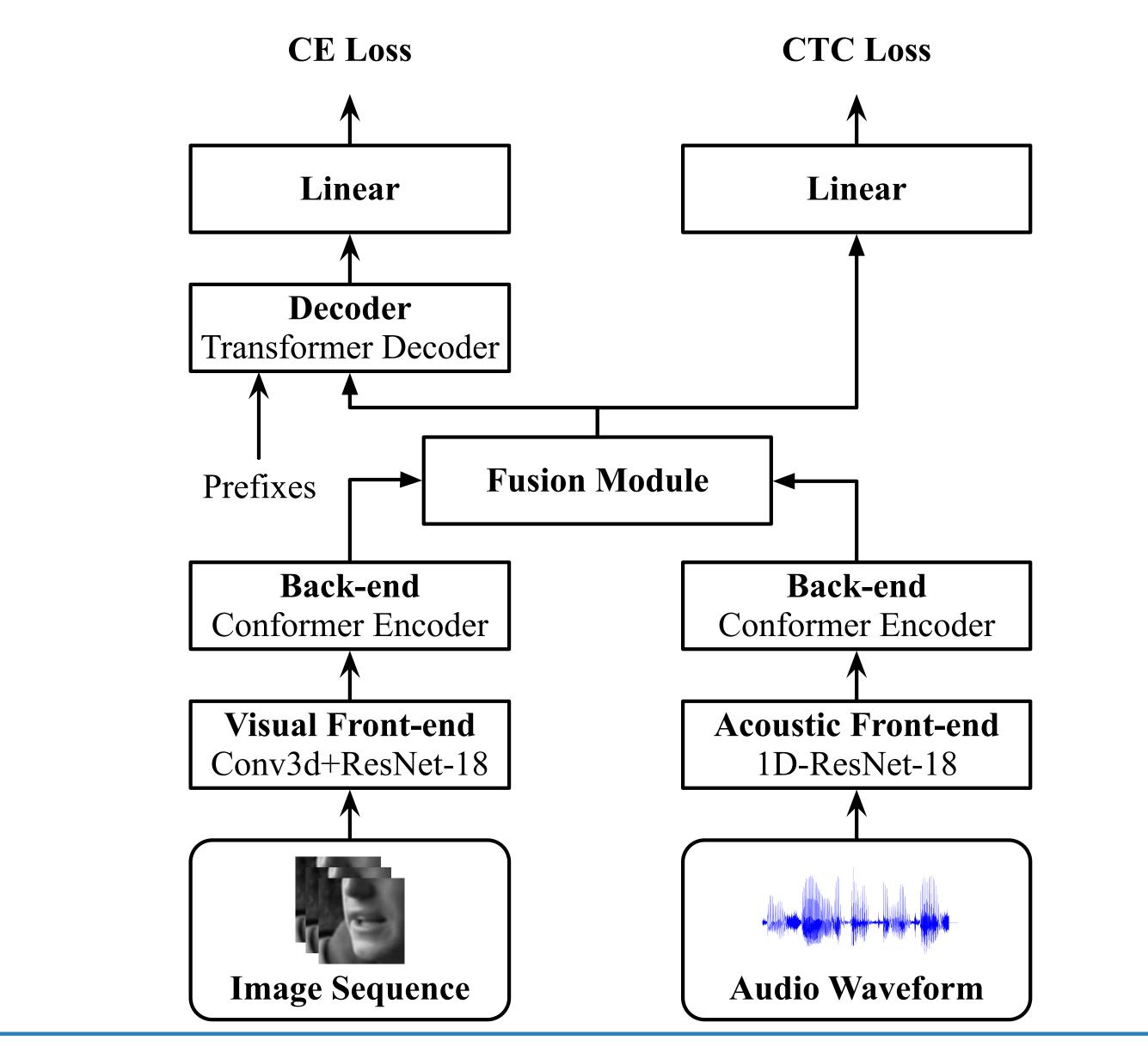
Raw audio waveforms

Conformer encoder and Transformer decoder

Joint end-to-end training

Transformer-based Language Model

Methodology



Performance on LRS2

Method	Training Data (Hours)	WER
Visual-only (\downarrow)		
TDNN [5]	LRS2 (224)	48.9
TM-seq2seq [1]	$MVLRS(730) + LRS2\&3^{v0.4}(632)$	48.3
Ours (V)	LRS2 (224)	39.1
Ours (V)	LRW(157) + LRS2(224)	37.9
Audio-only (\downarrow)		
TM-seq2seq [1]	$MVLRS(730) + LRS2\&3^{v0.4}(632)$	9.7
TDNN [5]	LRS2 (224)	6.7
Ours (filter-bank)	LRS2 (224)	4.3
Ours (raw A)	LRS2 (224)	4.3
Ours (raw A)	LRW(157) + LRS2(224)	3.9
Audio-visual (\downarrow)		
TM-seq2seq [1]	$MVLRS(730) + LRS2\&3^{v0.4}(632)$	8.5
TDNN [5]	LRS2 (224)	5.9
Ours(raw A + V)	LRS2 (224)	4.2
Ours(raw A + V)	LRW (157) + LRS2 (224)	3.7

	Performance on LRS3 ^{v0.4}	
Method	Training Data (Hours)	WER
Visual-only (1)		

Experiments

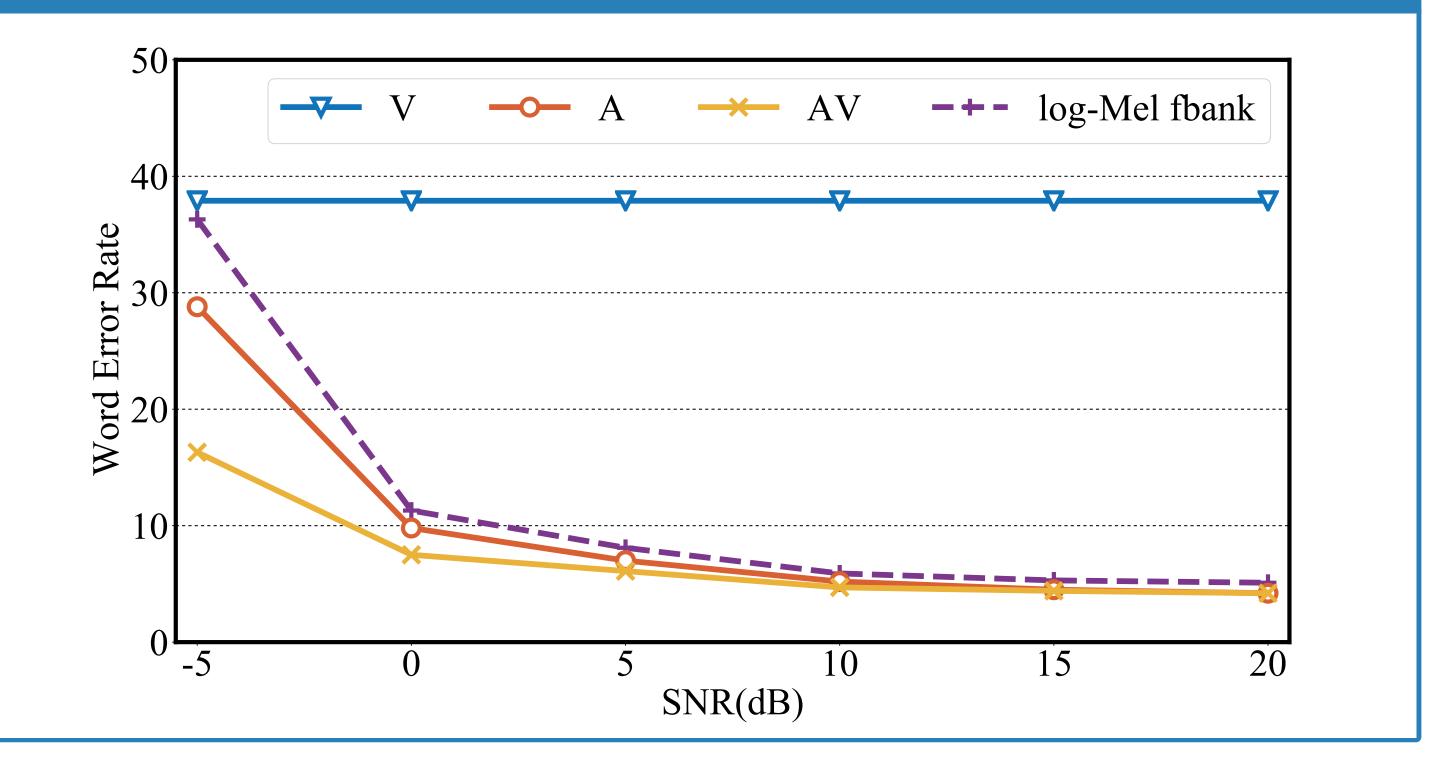
Datasets

- LRS2: 144 482 video clips from BBC programs (224.1 hours)
- LRS3: 151819 video clips from TED talks (438.9 hours)

[4]

VISUAI-OIIIY (\downarrow)		
TM-seq2seq [1]	$MVLRS(730) + LRS2\&3^{v0.4}(632)$	58.9
RNN-T [2]	YT (31000)	33.6
Ours (V)	LRS3 ^{v0.4} (438)	46.9
Ours (V)	$LRW(157) + LRS3^{v0.4}(438)$	43.3
Audio-only (\downarrow)		
TM-seq2seq [1]	$MVLRS(730) + LRS2\&3^{v0.4}(632)$	8.3
RNN-T [2]	YT (31000)	4.8
Ours (filter-bank)	LRS3 ^{v0.4} (438)	2.3
Ours (raw A)	LRS3 ^{v0.4} (438)	2.3
Ours (raw A)	$LRW(157) + LRS3^{v0.4}(438)$	2.3
Audio-visual (\downarrow)		
TM-seq2seq [1]	$MVLRS(730) + LRS2\&3^{v0.4}(632)$	7.2
RNN-T [2]	YT (31000)	4.5
Ours(raw A + V)	$LRW(157) + LRS3^{v0.4}(438)$	2.3

Performance in a noisy scenario on LRS2



- Data augmentation
 - Visual Stream: Horizontal Flipping, Random Cropping
 - Audio Stream: Additive Noise, Time Mask, Frequency Mask
- Network settings (e=12, $d^{\text{ff}}=2048$, $d^{\text{k}}=256$, $d^{\text{v}}=256$), where e denotes the number of conformer blocks, d^{ff} denotes the dimension of linear layer in the feed-forward module, d_k and d_v are the dimensions for queries/keys and values, respectively.

Setup

- **Experimental settings** We train the model for **50** epochs. The learning rate increases linearly with the first **25 000** steps, yielding a peak learning rate of **0.0004** and thereafter decreases proportionally to the inverse square root of the step number.
- Language model corpus the training transcriptions of LibriSpeech (960 h), pre-training and training sets of LRS2 and LRS3, with a total of **16.2** million words.

References

- T. Afouras et al. "Deep audio-visual speech recognition". In: IEEE PAMI (2018). DOI: 10.1109/TPAMI.2018.2889052.
- T. Makino et al. "Recurrent neural network transducer for audio-visual speech recognition". In: ASRU. 2019, pp. 905–912. DOI: 10.1109/ASRU46091.2019.9004036.
- S. Petridis et al. "Audio-Visual Speech Recognition with a Hybrid CTC/Attention Architecture". In: SLT. 2018, pp. 513–520. DOI: 10.1109/SLT.2018.8639643.
- S. Petridis et al. "End-to-End Audiovisual Speech Recognition". In: ICASSP. 2018, pp. 6548–6552. DOI: 10.1109/ICASSP.2018.8461326.
- J. Yu et al. "Audio-Visual Recognition of Overlapped Speech for the LRS2 Dataset". In: ICASSP. 2020, pp. 6984–6988. DOI: 10.1109/ICASSP40776.2020.9054127.

Conclusions

- We present end-to-end speech recognition models that improve audio-only, visual-only and audio-visual performance on LRS2 and LRS3^{v0.4}.
- On LRS3^{v0.4}, our audio-visual model is trained on a dataset which is $52 \times$ smaller than the state-of-the-art audio-visual model, 595 vs 31000 hours.
- We propose a convolutional neural network based backbone for acoustic modeling, showing that deep speech representations are more robust to audio noise than log-Mel filter-bank features.