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Motivating remarks

Motivations

Graph-based representation: Data can be associated with the vertices of a
graph to capture pairwise relations encoded by the presence of links

In many applications (brain networks, social and communication
networks) some links can be altered and the graph topology associated
with data may evolve over time

Problem: learning time-varying graphs from the observed noisy signals

Assumptions: Each graph alteration involves a few edges at a time
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Motivations

State of art:

- V. Kalofolias et al. (2017), G.B. Giannakis et al. (2018), J. Lee (2020), K.
Yamada et al. (2019), J. Mei et al. (2017), Y. Lin et al. (2019), E. Ceci
and S. Barbarossa (2020), P. Di Lorenzo et al. (2018)...

Our novel contribution

Joint online learning of time-varying graphs and signals from noisy
observations of smooth graph signals hinging on small perturbation
analysis of the Laplacian eigenvectors
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Introduction to GSP

Graph signal processing (GSP): provides tools for the processing of
signals defined over the vertices of a graph

A graph G is represented by
a set V of N vertices and a
set of edge E

Algebraic representation for undirected graph:

- Adjacency matrix A ∈ RN×N with entries aij = 1 if there is a link between
nodes i and j and aij = 0 otherwise

- Laplacian matrix L = D−A with D ∈ RN×N the diagonal degree matrix

- L = UΛUT where U collects all the eigenvectors {ui}Ni=1 and Λ is a
diagonal matrix containing its eigenvalues λi
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Introduction to GSP

A signal x on a graph is defined as the mapping x : V → R

Edges between nodes capture relations between graph signals

For undirected graph the Graph Fourier Transform (GFT) s of a graph
signal x is

s = UTx

A K-bandlimited graph signal is a signal whose GFT s is |K| = K sparse,
i.e.

x = UKsK

where UK ∈ RN×K collects the columns of U associated with the subset
of indices K
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Small perturbation of graph Laplacian

Given a nominal graph with Laplacian L, assume that a few edges are
added or removed

L L̃

Perturbed Laplacian: L̃ = L + ∆L = ŨΛ̃Ũ
T

Perturbed eigenvectors and eigenvalues:

ũi = ui + δui, λ̃i = λi + δλi

What is the impact of the graph perturbation on the eigen-decomposition
of the Laplacian L?
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Small perturbation of graph Laplacian

If all λi(L) are distinct, we may use the first-order analysis developed in [1]

Perturbation of the mth link: ∆L(m) = σm am aTm

- σm = 1,−1 if the edge m is added or removed from graph
- am ∈ RN : all zeros vector with entries ±1 associated with the vertices of edge m

Approximate perturbations:

δλ
(m)
i =uTi ∆L(m)ui = σmuTi am aTmui

δu
(m)
i =σm

N∑
j=2,j 6=i

uTj am aTmui

λi − λj
uj = σm

N∑
j=2,j 6=i

b
(m)
ji uj

Approximate sum of the perturbations:

δλi =
∑
m∈Ep

δλ
(m)
i , δui =

∑
m∈Ep

δu
(m)
i

assuming

− g−i �
∑
m∈Ep

σmuTi am aTmui � g+i

with g+i := λi+1 − λi, g−i := λi − λi−1 the eigenvalues gaps

[1] E. Ceci and S. Barbarossa, “Graph Signal Processing in the Presence of Topology
1Uncertainties”, IEEE Trans. on Signal Process., vol. 68, pp. 1558–1573, Feb. 2020 8/19
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Online learning of signals and graphs

Our goals:

Use small perturbation analysis to write a time-varying model in closed
form for the perturbed Laplacian

Track the graph perturbations and the graph signal evolution jointly from
noisy observations

Proposed method:

Online learning method for time-varying graphs affected by small edges
perturbations

9/19



Graph signal model

G := {V, E}: the nominal graph with Laplacian L

G[n] := {V, E [n]}: the time-varying graph at the time index n with
instantaneous Laplacian L[n]

Noisy observed graph signal at time n:

y[n] = x[n] + v[n] = UK[n]sK[n] + v[n]

- x[n] ∈ RN : K-bandlimited graph signal

- UK[n]: matrix collecting the first K eigenvectors of L[n]

- v[n] ∈ RN : Gaussian random vector with v[n] ∼ N (0, σ2
vI)
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Graph signal model

At each time n, the instantaneous Laplacian L̃[n] is a small perturbation of the
Laplacian at the previous time n− 1

L̃[n] = L̃[n− 1] + ∆L̃[n− 1]

The eigenvectors of L̃[n] are expressed as perturbations of the eigenvectors of L̃[n− 1]

ŨK[n] = ŨK[n− 1] + ∆ŨK[n− 1]

Using small perturbation analysis we have

∆ŨK[n− 1] =
∑
m∈E

zm[n]Ũ[n− 1]Bm,K[n− 1]

- zm[n] ∈ {1,−1, 0} is 1 or −1 if edge m at time n is, respectively, added or
removed and 0 if it remains unaltered

- Bm,K[n− 1] is derived using Ũ[n− 1] and Λ̃[n− 1]
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Online learning strategy

Proposed strategy:
Joint online estimation of:

1) the sparse vector z[n] = [z1[n]; . . . ; zE [n]], identifying the perturbed edges
over time

2) the GFT coefficients vector sK[n]

to minimize the mean-square error plus a l1-norm penalty

Average data fitting error: E[f (n)(sK, z)]

with

f (n)(sK, z) :=
∥∥y[n]− ŨK[n]sK

∥∥2
=
∥∥y[n]−

(
ŨK[n− 1] +

∑
m∈E

zmŨ[n− 1]Bm,K[n− 1]
)
sK
∥∥2
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Online learning strategy

Optimization problem: Using a least-mean square (LMS) approach, the problem is

{sK[n],z[n]} = arg min
sK,z

f (n)(sK,z) + γ ‖ z ‖1 (P)

s.t. a) zm ∈ {−1, 0, 1}, m = 1, . . . , E,

b) zT ci[n− 1] ≤ εg+i [n− 1], i = 2, . . . ,K,

c) zT ci[n− 1] ≥ −εg−i [n− 1], i = 3, . . . ,K,

d) zT c2[n− 1] ≥ δ − λ̃2[n− 1],

e) L̃ij [n− 1] +
∑
m∈E

zm( am aTm)ij ≤ 0, ∀i, j, i 6= j.

- b)-d) force the small perturbation condition
- the coefficient δ > 0 in d) ensures graph connectivity
- e) forces L̃[n] to be a valid Laplacian

Problem P is a mixed integer nonconvex problem!
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Online learning strategy

Proposed algorithm for solving P:

1) First relax the integer constraint to a box constraint zm ∈ [−1, 1] and
rewrite P as

min
sK,z

f (n)(sK, z) + γ ‖ z ‖1 (Pr)

s.t. gl[n− 1] ≤ H[n− 1]z ≤ gu[n− 1]

The set S is a convex polyhedron but Pr is still non-convex in the

objective function

2) LMS-type iterative algorithm: decouple Pr into two simpler convex
optimization problems by alternating between the minimization with
respect to sK and z
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Online learning strategy

At each iteration n:

1) Estimate the GFT vector ŝK[n] through a steepest-descent procedure

ŝK[n] = ŝK[n− 1]− µ∇sKf
(n)(ŝK[n− 1], ẑ[n− 1])

2) Given ŝK[n], find z using proximal splitting decomposition method:

Compute ẑ[n] = ẑ[n− 1]− µ∇zf (n)(ŝK[n], ẑ[n− 1])

Given ẑ[n], the proximal operator

proxIS = arg min
y∈S

1

2
‖ y − ẑ[n] ‖2

is the iterative projection ΠHSi(ẑ[n]) of ẑ[n] onto the halfspaces HSi

Given the projection z̄[n], the proximal ẑ[n] is

ẑ[n] = arg min
y

‖ y ‖1 +
1

2γµ
‖ y − z̄[n] ‖2= T γµ(z̄[n])

where T γµ(z̄) is a thresholding function

3) If a given stopping rule is satisfied, then update the eigenvectors ŨK[n] of L̃[n]
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Numerical results

We generate graphs with N = 30 nodes forming 3 clusters of 10 nodes. The
perturbation affects only the inter-clusters edges. Graph signal bandwidth: K = 3.
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A nominal graph is
perturbed at the iteration
indexes 200 and 400.
The proposed online
learning strategy is able to
track the graph
perturbation with a very
small graph signal
estimation error.
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Numerical results
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The capability of the
method to identify the
perturbed edges tends to
one as SNR increases.
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Conclusions

We proposed an online strategy to track jointly the perturbation of a
time-varying graph and the associated signal

Hinging on the small perturbation analysis a time-varying model for the
perturbed Laplacian is derived in closed form

Future developments:

enforce some kind of smoothness in both the graph and the corresponding
signal evolution over time

improve performance by developing a second-order approximation of the
eigenvectors of the perturbed Laplacian
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Thanks for your attention!
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