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Introduction

Introduction

Motivation

Deep Learning (DL) requires lots of
computing power and energy (e.g.,
training GPT-3 would cost $4.6M [1])

Low-precision formats are an efficient
way to reduce the memory footprint
and power consumption

The novel Posit format is designed as
a direct drop-in replacement for the
IEEE floating-point, providing higher
accuracy in certain application domains
for lower energy consumption [2]
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Figure: Growth of the computing power
demanded by DL against the hardware
performance [3].
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Table: Related work regarding neural network training using Posits.
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Montero et al. (2019) [4]  Langroudi et al. (2019) [5] Lu et al. (2020) [6] Murillo et al. (2020) [7]

Introduction

Trained a Fully Trained a FCNN Trained Trained CNNs
Connected Neural using {32, 16}-bit Convolutional using {32, 16}-bit
Network (FCNN) posits; Neural Networks posits and quires;
using posits; Evaluated the (CNNs) using Evaluated
Evaluated {32, 16, MNIST and posits; CIFAR-10 dataset;
14, 12, 10, 8}-bit Fashion MNIST 16-bit posits for Posit(8, 0) did not
posits; datasets. the optimizer and converge.

Irregular last layer, and

convergence for 8-bit posits

posit(10, 0) and everywhere else;

posit(8, 0). Used floats for the

15t epoch and
intermediate
calculations.

X All works are unable to completely and properly train a DNN using posits smaller than 16 bits.
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S Posit Numbering System
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Any precision/number of bits (nbits) Figure: Generic posit format [8].

and exponent size (es) — Posit(nbits, es)

Decimal accuracy

No overflow nor underflow and tapered
precision — numbers near 1 are more
accurate

! loga(x)
10 s 5 10

Figure: Comparison of posit(8, 1) and
float decimal accuracies [8].
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Deep Learning Posit Framework

PositNN Framework
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Popular DL frameworks: PyTorch and TensorFlow
They do not natively support the novel posit format Tz :
. . . . i Forward !
Supporting posits would require to reimplement i 71" |Propagation| p, °““’”‘/;
bees most of their functions and operators :
Learning ;
Posit !
Framework

A new DL framework was developed — PositNN ' :
Figure: Block diagram of DNN

Supports posits and quires of any precision > X
training and inference.

simulated via software with the Universal library [9]

Implemented in C++ with multithreading support
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Deep Learning Posit Framework

Functionalities
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Table: Supported functionalities of PositNN.
Posit Tensor Layers I'A:E:Z:tc;:rs] Loss Functions Optimizer

Deep - - ;
Learning Multidimensional Linear: RelLU Mean Squared SGD:
Posit arrays with posits Equivalent to matrices Si id Error (MSE) Momentum and
Framework & 1igmol L X Rat

Basic arithmetic operations TanH Cross Entropy €arning Rate

operations Convolutional: (LR) scheduler

Performs a convolution
for a 3D input

(e.g. image)

Pooling operations

Accumulate using
quires

Save and load to
a binary file

Convert from/to Dropout

PyTorch tensor
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Training with Low-Precision Posits

Minimum Posit Precision
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Table: Evaluation of how different posit precisions
compare to 32-bit float for DNN training.

Outline Format Accuracy
es=0 es=1 es=2
. . Float (FP32 .289
Training LeNet-5 on Fashion MNIST oat (FP32) 90.28%

) _ _ Posit16 88.23% 90.87%  90.55%
16-bit posits achieved an accuracy Posit12 66.66% 90.15%  90.26%
equivalent to 32-bit floats Posit10 19.86% 88.15%  88.52%

Posit9 11.65% 84.65%  82.50%
Posit8 10.00% 12.54%  12.55%
Traini ith . .
Low 8-bit posits are unable to converge _
Precision Testing: Accuracy
e e =

e
3
o

es=0 penalizes the achieved model
accuracy (small dynamic range)

accuracy
°
3

epoch
—— float —— posit(16,1) —- posit(9,1) ---- posit(8, 0)

Figure: Training progress of posit and 32-bit float.
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Training with Low-Precision Posits
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Mixed Precision Configurations Table: Training with posit(8,2) for everything
except optimizer and loss. Compared to 32-bit float.
Outline Training LeNet-5 on Fashion MNIST Mixed Precision Configuration
Optimizer (O)  Accuracy Loss (L) Accuracy
The goal is to reduce the precision to pioi(Fp32)  00.28%  Float(FP32)  90.28%
8 bits; 016-L8, 88.14%  012-L16, 90.03%
. 012-L84 88.06% 012-L124 90.07%
The gradients decrease as the model  o10.L8, 86.07%  O12-L10, 00.13%
converges — vanishing gradient 09-L8, 84.80%  012-L94 89.35%
08-L8, 19.39%  012-18,4 88.0%
problem;
Training
Training with . H Inference
Low Insu;‘ﬁc_lent c.iy}?amlc range .and By @
Posits resolution with narrow posit \—;—lpml
preCISIonS; |0plimizerl posi(12 Model Loss |'—‘Target

posit 8
Backward
Propagation

Figure: Mixed precision training configuration.
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Increasing the optimizer and loss
precisions to {16, 12}-bit posits is
enough;

posit12

posit 8




Experimental Evaluation

Experimental Setup
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Outline Evaluation with various datasets and Table: Considered datasets, models, and
models number of epochs used for training.
o ] ] Dataset Model Epochs
DNN training using a mixed
| .. . f ti MNIST LeNet-5 10
OW—!)reCISI.On posit con.lgura ion Fashion MNIST  LeNet-5 10
(8-bit posit for everything except CIFAR-10 CifarNet 20
optimizer and loss) CIFAR-100  CifarNet 20
Experimental Table: Configurations used for the training of the various CNNs. LR is for Learning Rate.
Evaluation
Loss Optimizer  Initial LR LR Scheduler Momentum  Batch Size
Cross Entropy SGD 1/16 Divide by 2 after every 4 epochs 0.5 64
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Table: Accuracy evaluation of using posits for training with mixed precision and various datasets
Outline and models. The obtained results were compared against the same models trained with 32-bit
floats with PyTorch.

MNIST Fashion MNIST CIFAR-10 CIFAR-100
Format (LeNet-5) (LeNet-5) (CifarNet) (CifarNet)

Accuracy Accuracy Top-1 Top-3 Top-1 Top-5
Float (FP32) 99.21% 90.28% 70.79% 92.64% 36.35% 66.92%
Posit8 and 016-L164 99.19% 90.46% 71.30%  92.65%  35.41%  67.00%
Posit8 and 016-L12, 99.17% 90.14% 71.09%  92.83% 35.27% 66.57%
Posit8 and 012-L12, 99.20% 90.07% 68.28%  91.22%  25.85% 57.77%
Posit8 and 012-L104 99.17% 90.13% 68.41% 91.41% 25.37% 56.21%

Experimental
Evaluation

Mixed precision posit configuration allows to replace 32-bit floats for DNN training
85 — 95% of the computations are performed with only 8-bit posits, ~ 4x less memory

Langroudi et al. (2019) [5] observed an accuracy loss of ~ 7% for 16-bit floats
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Main Contributions

Outline Proposed a new DNN framework — PositNN! — for training and inference using
posits and quires

Evaluated multiple CNNs and datasets using posits of various precisions

8-bit posits can replace 32-bit floats in a mixed precision configuration for DNN
training (accuracy degradation < 1%)

Future Work
Evaluate these results in a hardware implementation of a posit unit, its critical
path (time) and energy consumption (ongoing)
Compare posits to other numerical formats, such as block floating-point

Conclusion

Explore adapting the posit precision during run-time

LAvailable at: https://github.com/hpc-ulisboa/posit-neuralnet
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