
ABSTRACT

Low-precision formats have proven to be an efficient way
to reduce not only the memory footprint but also the
hardware resources and power consumption of deep
learning computations. Under this premise, the posit
numerical format appears to be a highly viable substitute
for the IEEE floating-point, but its application to neural
networks training still requires further research. Some
preliminary results have shown that 8-bit (and even
smaller) posits may be used for inference and 16-bit for
training, while maintaining the model accuracy. The
presented research aims to evaluate the feasibility to train
deep convolutional neural networks using posits. For
such purpose, a software framework was developed to
use simulated posits and quires in end-to-end training
and inference. This implementation allows using any bit
size, configuration, and even mixed precision, suitable for
different precision requirements in various stages.
 The obtained results suggest that 8-bit posits can
substitute 32-bit floats during training with no negative
impact on the resulting loss and accuracy.

Index Terms – Posit numerical format, low-precision
arithmetic, deep neural networks, training, inference

POSITNN: TRAINING DEEP NEURAL NETWORKS WITH MIXED LOW-PRECISION POSIT

Gonçalo Raposo, Pedro Tomás, Nuno Roma

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

4201

IEEE ICASSP 2021 June, 2021

POSIT NUMBERING SYSTEM

DEEP LEARNING POSIT FRAMEWORK

● New open source framework for neural networks

● Training and inference using posits of any precision

● Support for mixed precision configurations

● Implemented in C++ and with a similar API to PyTorch

EXPERIMENTAL EVALUATION

CONCLUSION

● 8-bit posits can replace 32-bit floats in a mixed
precision configuration for DNN training (accuracy
degradation < 1%)

● Optimizer and loss function require higher precision

● 85 – 95% of the computation were performed with
8-bit posits (~ 4x less memory)

● Future work shall evaluate these results in a
hardware implementation of a posit unit, namely, its
critical path (time) and energy consumption
(ongoing)

REACH OUT

E-mail: goncalo.cascalho.raposo@tecnico.ulisboa.pt

GitHub: https://github.com/hpc-ulisboa/posit-neuralnet

Fig. Distributions of a 8-bit posit (blue) and a 8-bit floating-point (orange).

p=(−1)sign×22
es
×k

×2exponent×(1+ fraction)

Posit
(n bits)

Sign
(1 bit)

Regime
(variable)

Exponent
({0..es} bits)

Fraction
(remaining)

Fig. Format encoding of a posit with n bits and es exponent size.

Tab. Accuracy of CNNs trained and tested with posits (accumulating
with quires). Everything with 8-bit posit except optimizer (O) and loss (L).
Compared against 32-bit float.

Posit Tensor Layers
Activation
Functions

Loss
Functions

Optimizer

● Multidimensional
arrays with posits

● Basic arithmetic
operations

● Accumulate
using quires

● Save and load to
a binary file

● Convert from/to
PyTorch tensor

● Linear:
Equivalent to
matrices operations

● Convolutional:
Performs a
convolution for a
3D input (e.g.
image)

● Pooling operations
● Dropout

● ReLU
● Sigmoid
● TanH

● Mean
Squared
Error
(MSE)

● Cross
Entropy

● SGD:
Momentum
and
Learning
Rate (LR)
scheduler

Tab. Supported functionalities of PositNN.

Fig. Block diagram of a possible mixed precision configuration for
DNN training and inference.

Forward
Propagation

Loss

Backward
Propagation

Gradients

Optimizer

Dataset

Model

Output

Target

Training
Inference

● The gradients decrease as the model converges –
vanishing gradient problem

● Insufficient dynamic range and resolution with narrow
posit precisions for the optimizer and loss function

mailto:goncalo.cascalho.raposo@tecnico.ulisboa.pt
https://github.com/hpc-ulisboa/posit-neuralnet

