
ABSTRACT

Low-precision formats have proven to be an efficient way 
to reduce not only the memory footprint but also the 
hardware resources and power consumption of deep 
learning computations.  Under this premise, the posit 
numerical format appears to be a highly viable substitute 
for the IEEE floating-point, but its application to neural 
networks training still requires further research. Some 
preliminary results have shown that 8-bit (and even 
smaller) posits may be used for inference and 16-bit for 
training, while maintaining the model accuracy. The 
presented research aims to evaluate the feasibility to train 
deep convolutional neural networks using posits. For 
such purpose, a software framework was developed to 
use simulated posits and quires in end-to-end training 
and inference. This implementation allows using any bit 
size, configuration, and even mixed precision, suitable for 
different precision requirements in various stages.
    The obtained results suggest that 8-bit posits can 
substitute 32-bit floats during training with no negative 
impact on the resulting loss and accuracy.
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POSIT NUMBERING SYSTEM

DEEP LEARNING POSIT FRAMEWORK

● New open source framework for neural networks

● Training and inference using posits of any precision

● Support for mixed precision configurations

● Implemented in C++ and with a similar API to PyTorch

EXPERIMENTAL EVALUATION

CONCLUSION

● 8-bit posits can replace 32-bit floats in a mixed 
precision configuration for DNN training (accuracy 
degradation < 1%)

● Optimizer and loss function require higher precision 

● 85 – 95% of the computation were performed with 
8-bit posits (~ 4x less memory)

● Future work shall evaluate these results in a 
hardware implementation of a posit unit, namely, its 
critical path (time) and energy consumption 
(ongoing)
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E-mail: goncalo.cascalho.raposo@tecnico.ulisboa.pt

GitHub: https://github.com/hpc-ulisboa/posit-neuralnet

Fig. Distributions of a 8-bit posit (blue) and a 8-bit floating-point (orange). 
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Fig. Format encoding of a posit with n bits and es exponent size.

Tab. Accuracy of CNNs trained and tested with posits (accumulating 
with quires). Everything with 8-bit posit except optimizer (O) and loss (L). 
Compared against 32-bit float.
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● Multidimensional 
arrays with posits

● Basic arithmetic 
operations

● Accumulate 
using quires

● Save and load to 
a binary file

● Convert from/to 
PyTorch tensor

● Linear:
Equivalent to 
matrices operations

● Convolutional:
Performs a 
convolution for a 
3D input (e.g. 
image)

● Pooling operations
● Dropout

● ReLU
● Sigmoid
● TanH

● Mean 
Squared 
Error 
(MSE)

● Cross 
Entropy

● SGD:
Momentum 
and 
Learning 
Rate (LR) 
scheduler

Tab. Supported functionalities of PositNN.

Fig. Block diagram of a possible mixed precision configuration for 
DNN training and inference.
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● The gradients decrease as the model converges – 
vanishing gradient problem

● Insufficient dynamic range and resolution with narrow 
posit precisions for the optimizer and loss function
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