

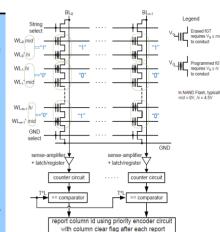
Enhanced Vote Count Circuit based on NOR Flash **Memory for Fast Similarity Search**

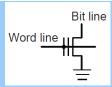
Haiyan Shu, Wenyu Jiang, Xiaoming Bao, Huan Zhou, and Rongshan Yu Institute for Infocomm Research, A*STAR, Singapore

Vote Count Circuits

Vote Count concept

- Both reference vectors (v_i for j-th vector) and the query vector (q) are converted into discrete vectors by some deterministic hashing;
 - let f_t(v) denote a vector v's value at hashed dimension i
 - let c_i denote a counter associated with vector v_i, initialize to 0


$$\begin{array}{l} \text{for (i = 0; i < L; i++)} \\ \forall v_j, if \left(f_i\!\left(v_j\right) == f_i\!\left(q\right)\right) c_j + +; \\ \forall \ v_j, \text{return} \ v_j \text{ as candidates} \ if c_j \geq T; \end{array}$$


Vote Count Circuits

> Exploiting the fact that when reading a word on a row, its corresponding word-line (WL) will activate all cells on that row; by having a sense-amp at each column or bit-line (BL), the entire row is read out in 1 access cycle;

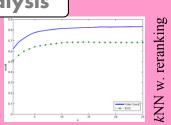
Enhanced Vote Count (EVC)

- Comparing m values instead of 1 (bet, query and reference) at a time;
- This simultaneous m-value comparison made possible by using the interlocked design, where 2 cells are used to represent 1 pattern bit. First proposed for NAND Flash, now also proposed for NOR Flash.

NOR flash memory

Prototype chip

- Customized 0.18um NOR Flash circuit, 1024 word-lines and 1024 bit-lines which can accommodate 1024 reference vectors to be retrieved simultaneously
- Each hashing feature vector may have up to 512 dimensions.
- Retained the mux that shares each sense-amplifier with 32 columns.
- > A test PCB is designed to mount the EVC prototype chip, and integrate with an FPGA development board



VC and EVC comparison L=512, m=8

Performance Analysis

ote Count Chip and Board

Speed and power consumption

	DRAM implementation	NAND implementation	NOR implementation
original vote count circuit	$L \cdot au_{par}$	$L \cdot \tau_{ser}$	$L \cdot au_{par}$
EVC circuit		$\frac{L}{m} \cdot au_{ser}$	$\frac{L}{m} \cdot au_{par}$

 τ_{par} : 25 – 50ns τ_{ser} : 5 – 50 μ s L: # of hashed dimensions m: # of values simultaneously compared in EVC Competitive Analysis with Commercial Software and Open Source Toolkits

Performance Metrics (1 Million DB	EVC		Open Source Toolkits
items, find top-100 matches)	low-density	high-density	Multi-index Hashing
Search Speed	0.139ms	$6.5 \mu s$	3ms
Energy per Search	0.75mJ	0.03mJ	150mJ
Physical Space	$50cm^2 \cdot 1cm$	$1 - 2cm^2 \cdot 1cm$	desktop PC