BLEND-RES^2NET: Blended Representation Space by Transformation of Residual Mapping with Restrained Learning For Time Series Classification

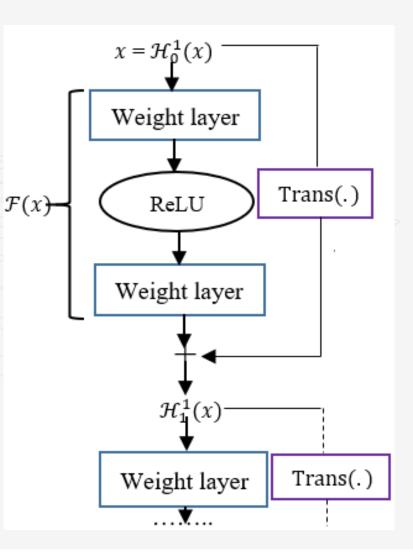
¹Arijit Ukil, ²Antonio J. Jara, ³Leandro Marin

¹Tata Consultancy Services, ²HOP Ubiquitous (HOPU), ³University of Murcia

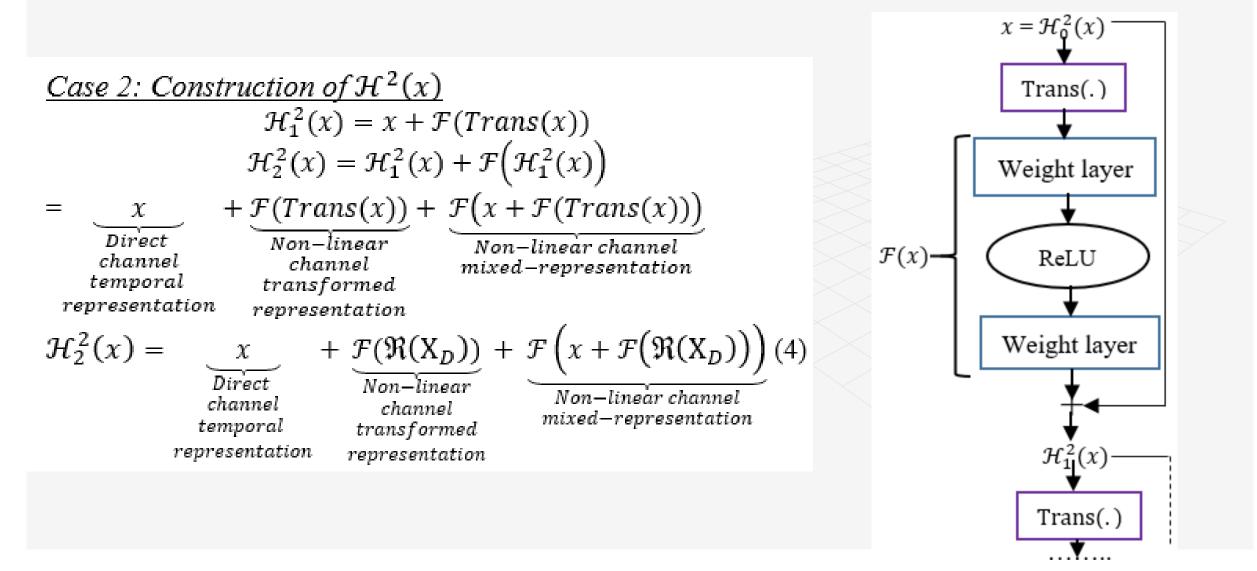
Problem- Insufficient training instances in time series classification task demands novel deep neural network architecture to warrant consistent and accurate performance.

Solution-

- We propose Blend-Res²Net that blends two different representation spaces: $\mathcal{H}^1(x) = \mathcal{F}(x) + Trans(x)$ and $\mathcal{H}^2(x) = \mathcal{F}(Trans(x)) + x$.
- Deep network complexity is adapted by proposed novel restrained learning, which introduces dynamic estimation of the network depth.

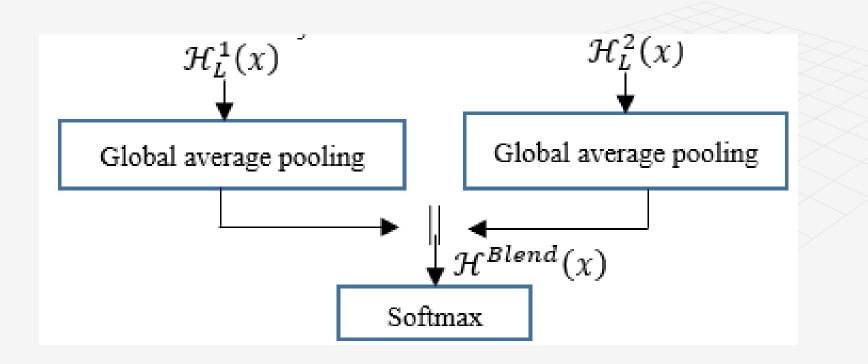

Results-

- Blend-Res²Net is demonstrated by a series of ablation experiments over publicly available benchmark time series archive- UCR.
- Blend-Res²Net outperforms baselines and state-of-the-art algorithms including 1-NN-DTW, HIVE-COTE, ResNet, InceptionTime, ROCKET, DMS-CNN, TS-Chief


Blend-Res²Net consists of three distinct components-

- 1. Transformation of the residual channel: The transformation of residual channel incorporates spectral (Discrete Fourier co-efficients) signature in the residual mapping.
- 2. Blending of learning channels: Two parallelly constructed transformed residual networks are merged together to enable intricate learning model.
- *3. Restrained learning:* Restrained learning dynamically limits the network complexity by incorporating elasticity of the residual block depth through dynamic layer configuration.

Case 1: Construction of $\mathcal{H}^{1}(x)$ For the simplicity of explanation, we consider L = 2. $\mathcal{H}_1^1(x) = Trans(x) + \mathcal{F}(x)$ $\mathcal{H}_2^1(x) = \mathcal{H}_1^1(x) + \mathcal{F}\big(\mathcal{H}_1^1(x)\big)$ $= Trans(x) + \mathcal{F}(x) + \mathcal{F}(Trans(x) + \mathcal{F}(x))$ (2)Non-linear Direct Non-linear channel channel channel mixed-representation transformed temporal representation representation Let us assume X_D be the Discrete Fourier Transform of x, $x \leftrightarrow X_{D}$ and the real-part of X_{D} be $\Re(X_{D})$. From equation (2), we get (where, $Trans(x) = \Re(X_D)$): $\mathcal{H}_{2}^{1}(x) = \Re(\mathbf{X}_{D}) + \mathcal{F}(x) + \mathcal{F}(\Re(\mathbf{X}_{D}) + \mathcal{F}(x))$ (3)



Transformation of the residual channel

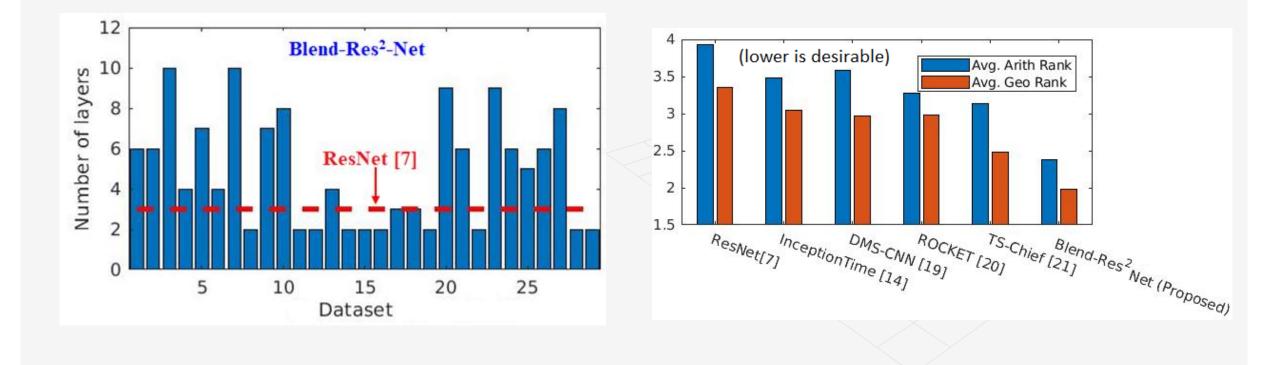
Blending of learning channels

We construct the blended representation $\mathcal{H}^{Blend}(x)$ by concatenating (||) \mathcal{H}^1_L and \mathcal{H}^2_L

Algorithm: Estimating network depth (Demonstrating for χ^1_{Train})

Input: $\chi_{Train}^{Universe}$, χ_{Train}^{1} , maximum allowed residual blocks δ_{max} and minimum residual blocks δ_{min} **Output:** $\delta_{Final}(\chi_{Train}^{1})$

Method:


α^{Universe} = max (Entropy(X^I_{Train}))
α¹ = Entropy(X¹_{Train}), α^{1_normalized} = α¹/α^{Universe}
β^{Universe} = max(|X^{Universe}_{Train}))
β¹ = |X¹_{Train}|, β^{1_normalized} = β¹/β^{Universe} (The normalization factors are set to 1 in the absence of other types of training datasets other than X¹_{Train} or when X^{Universe}_{Train} = X¹_{Train}).
δ_{Final}(X¹_{Train}) = min(δ_{max}, max(δ_{min}, [α^{1_normalized} × β^{1_normalized}]))

Results

Dataset	1-NN DTW [6, 8]	HIVE COTE [11]	ResNet [7]	Incept ion Time [14]	Blend- Res ² Net	Blend- Res ² Net	Blend- Res²Net (Proposed)
Arrowhead	0.703	<u>0.863</u>	0.817	0.823	0.819	0.822	0.829
Beef	0.633	<u>0.933</u>	0.767	0.667	0.767	0.809	0.838
BirdChicken	0.750	0.850	0.900	<u>0.950</u>	0.912	0.920	<u>0.950</u>
Car	0.733	0.867	<u>0.933</u>	0.867	<u>0.933</u>	0.907	0.919
CinCTorso	0.651	<u>0.996</u>	0.771	0.865	0.769	0.752	0.848
Coffee	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000	<u>1.000</u>
DiatomSizeRed	0.967	0.941	0.931	0.922	0.940	0.952	<u>0.973</u>
ECG200	0.770	0.850	0.870	0.920	0.865	0.859	0.870
ECGFivedays	0.768	1.000	0.931	1.000	0.982	1.000	<u>1.000</u>
FaceFour	0.830	0.954	0.932	0.955	0.927	0.938	<u>0.960</u>
FacesUCR	0.905	0.963	0.958	0.967	<u>0.969</u>	<u>0.969</u>	<u>0.969</u>
Fish	0.823	0.989	0.989	0.971	0.989	0.989	<u>0.995</u>
GunPoint	0.907	1.000	0.993	1.000	<u>1.000</u>	<u>1.000</u>	1.000

Ham	0.467	0.667	<u>0.781</u>	0.695	0.720	0.716	0.737
Haptics	0.377	0.519	0.506	0.526	0.522	0.510	<u>0.551</u>
InlineSkate	0.384	<u>0.500</u>	0.365	0.480	0.381	0.401	0.442
ItalyPower	0.950	0.963	0.960	0.955	0.960	0.955	<u>0.968</u>
Lightning2	<u>0.869</u>	0.820	0.746	0.803	0.781	0.784	0.811
Lightning7	0.726	0.740	0.836	0.808	0.827	<u>0.839</u>	<u>0.839</u>
MoteStrain	0.835	<u>0.933</u>	0.895	0.883	0.873	0.901	0.901
OliveOil	0.833	<u>0.900</u>	0.867	0.833	0.849	0.835	0.843
OSULeaves	0.591	<u>0.979</u>	<u>0.979</u>	0.926	0.933	0.921	0.933
Sony1	0.725	0.765	<u>0.985</u>	0.850	<u>0.985</u>	0.951	0.975
Sony2	0.831	0.923	0.962	0.938	<u>0.977</u>	<u>0.977</u>	<u>0.977</u>
ToeSeg1	0.772	0.982	0.965	0.969	0.958	0.979	<u>0.984</u>
ToeSeg2	0.838	0.954	0.862	<u>0.946</u>	0.863	0.856	0.876
TwoLeadECG	0.905	0.996	<u>1.000</u>	0.997	<u>1.000</u>	<u>1.000</u>	1.000
Worms	0.584	0.558	0.619	<u>0.779</u>	0.703	0.710	0.736
Wormtwoclass	0.623	0.779	0.735	0.766	0.754	<u>0.782</u>	<u>0.782</u>
Wins	2	9	6	7	7	8	15

Results

- The proposed interplay of model complexity and relaxation in Blend-Res²Net has played an important role to construct a substantially improved timeseries classification model and outperformed the current benchmarks and state-of-the-art methods.
- Ablation studies further reveal efficacy of the proposed method.
- Our future direction is to introduce game theoretic equilibrium setting between model complexity and model relaxation.

