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Introduction
Wireless-based activity sensing is evolving rapidly due to the interest
in many applications such as intrusion detection, patient care, smart
home, etc.

Traditional human activity recognition systems
Achieved using cameras or motion sensors

Imposes inconvenience in wearing sensors and cameras require good
lighting

State-of-the-art: shown benefits of utilizing wireless signals with only
WiFi devices for activity sensing

Non line-of-sight (NLOS)/line-of-sight (LOS) identification

Human presence detection

Classification of human activities
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Introduction

Received signal strength (RSS): limited accuracy

Channel state information (CSI): reveals the multipath features of
the channel at the granularity of the OFDM subcarriers

Machine learning (ML)-based approaches: widely used in numerous
applications due to their ability to learn the statistical patterns from
the CSI

Limitations of WiFi-based activity sensing

Performance is limited since the devices typically are equipped with
two or three antennas

Difficulties in exploiting statistical patterns in the spatial domain and
degraded accuracy especially in NLOS conditions

4 / 22



Outline
Introduction

System model
Feature extraction

Massive MIMO measurement setup
Machine learning models

Results

Problem statement and contributions

Objective is to show the potential of using massive MIMO for
wireless sensing applications with machine-learning algorithms

We use real data from a massive MIMO system to exploit the
advantages of the spatial domain

Proposed algorithms to extract features from the amplitude and
phase information of the measured massive MIMO data

Efficiently classify moving objects in LOS and NLOS scenarios by
using ML models
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Figure: Measurement setup for activity sensing
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System model

Uplink narrow band massive MIMO OFDM system with multiple UEs

Received signal matrix Yf ∈ CM×N

Yf = Hf � Γf + Nf

Subcarrier f ∈ [1,F ], radio-frequency (RF)-chain m ∈ [1,M],
snapshot n ∈ [1,N], and Hf ∈ CM×N is the complex-valued channel
matrix

Difficult to precisely model Hf due to unknown positions of the UEs
and the environment as well as unknown Doppler shifts caused by
unpredictable speeds and directions of different moving objects
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System model

Frequency response of the RF chains Γf ∈ CM×N , each element is
defined as

Γf (m, n) = dmej(αm−n εm,f )

dm = amplitude scaling, αm = initial phase offset, εm,f = carrier
frequency offset

Nf ∈ CM×N = noise for the f -th subcarrier

Y ∈ CF×M×N = received data for a total of F subcarriers
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Amplitude-based feature
Phase-based feature

Feature extraction

Challenging to apply traditional detection and estimation theory
since we do not have a physically accurate signal model

Motivated to exploit the statistical features that can be efficiently
used by ML models

ML models can operate with raw I/Q samples: requires a huge data
set for training the models

We therefore, exploit features from a real data set to reduce the
dimensionality, which significantly reduces the training data set
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Amplitude-based feature
Phase-based feature

Data pre-processing

Linear interpolation: to overcome sampling jitter during
measurements

Wavelet-based denoising method: to eliminate random noise present
in the data
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Amplitude-based feature
Phase-based feature

Amplitude-based feature

Input: |Z| ∈ RF×M×N and Tw , Output: Amplitude feature, A
for n = 1 to N do

Define Bn ∈ RF×M , as the matrix obtained from |Z| at time n:
Bn = [bn(1), . . . , bn(F )]T, bn(f ) ∈ RM , f ∈ [1, F ] .

end
Define D ∈ RFM×N , as the matrix obtained from vectorizing the matrices Bn, n ∈ [1,N]:
D = [vec(B1), vec(B2), . . . , vec(BN )] .
for j = 1 to N/Tw do

E = [D(1),D(2), . . . ,D(Tw )], E ∈ RFM×Tw ,D(i) ∈ RFM×1, i ∈ [1,Tw ] .
Determine the inner product: S = ETE, S ∈ RTw×Tw .
Perform eigenvalue decomposition: S = UΣUT .
gj = Sort the eigenvalues in the descending order. Discard the first eigenvalue and store the
rest.
Slide Tw in D and repeat the calculations of S and Σ .

end
G = [g1, g2, . . . , gN/Tw ]T
A = E[G], where E[·] is the expectation operator
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Phase-based feature

Phase-based feature
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Linear regression for unwrapped phase

 Waving balloon: Phase

 Waving balloon: Regression

 Human dancing: Phase

 Human dancing: Regression

 Spinning and moving wheel: Phase

 Spinning and moving wheel: Regression

 Spinning bike wheel: Phase

 Spinning bike wheel: Regression

Static environment: Phase

Static environment: Regression
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Phase-based feature

For a static scenario, only minor phase changes are expected due to
measurement noise

For dynamic events, the phase of Hf changes more rapidly across
the snapshots due to Doppler shifts

The phase of Γf (m, n) increases or decreases linearly with snapshots
due to the CFO across the subcarriers

We perform linear regression on the unwrapped phase of Y for each
f and m across all snapshots
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Phase-based feature

Ŷ: unwrapped phase of Y
ξ = [1, 2, ...,N]T ∈ RN : indexes of the snapshots
1N ∈ RN : unit vector
Ψ ∈ RN×2 as Ψ = [1N , ξ]

Input: Unwrapped phase Ŷ ∈ RF×M×N , Output: Phase feature, P
for m = 1 to M do

for f = 1 to F do
Linear regression for each f and m: βf ,m = (ΨT Ψ)−1 ΨT ŷf ,m .
Define ηf ,m ∈ RN as the deviation between ŷ f ,m and the regression line:
ηf ,m = ŷ f ,m − βf ,m(2) · ξ − βf ,m(1) · 1N
Define qf ,m as the variance of ηf ,m: qf ,m = var(ηf ,m)

end
end
Define Q ∈ RF×M , where the f -th row and m-th column of Q is qf ,m .
Calculate the pairwise column correlation of Q: S̃ ∈ RM×M .
Perform eigenvalue decomposition: S̃ = ŨΣ̃ŨT.
Sort the eigenvalues in the descending order and discard the first eigenvalue. The rest are stored in
P as the phase-based features.
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Massive MIMO measurements

Measurement campaign: indoor laboratory environment at Lund
University, to capture samples under both LOS and NLOS scenarios

Dynamic events: waving an aluminium foil balloon, spinning a bike
wheel, spinning and moving a bike wheel, and human dancing

Samples were also collected in static environments

For each of the static and dynamic events, 18 experiments were
conducted, resulting in a total of 90 experiments
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Massive MIMO measurements

BS: Lund University massive MIMO testbed (LuMaMi)

Software-defined radio-based testbed that operates in OFDM-mode
with 100 antennas connected to 100 transceiver chains at a carrier
frequency of 3.7 GHz with 20 MHz of bandwidth

Antenna elements are separated half a wavelength apart and
arranged in four rows of 25 elements each

UEs consist of an USRP with two transceiver chains and are
equipped with either one or two dipole antennas

Each measurement and active UE transceiver chain: 100 frequency
points and 3000 snapshots over 30 seconds were collected, this
constituting one experiment
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Machine learning models

Classifier model
f (x; θ) : x ∈ X → R2

Input x = [A,P] is a combination of the amplitude and phase-based
features

Classical supervised ML: Implemented using the SVM model by
utilizing the package sklearn with the kernel type linear

Feedforward neural network
Table: NN architecture with trainable parameters of 3, 576

Size Parameters Activation function
Input: [A, P] 12 - -

Layer 1 (Dense) 64 832 elu
Layer 2 (Dense) 32 2080 elu
Layer 3 (Dense) 16 528 elu
Layer 4 (Dense) 8 136 elu
Layer 5 (Dense) 2 18 softmax
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Results

Measurement events
v1: static, v2: human dancing, v3: spinning bike wheel, v4: waving of
an aluminium foil balloon, and v5: spinning and moving bike wheel

Classification problems

Table: Classification of different moving objects

Cases Classifications Labels
1 Between {v2, v3, v4, v5} and {v1} {v2, v3, v4, v5} → ‘1’

{v1} → ‘0’
2 Between {v2} and {v3} {v2} → ‘1’

{v3} → ‘0’
3 Between {v2} and {v3, v4, v5} {v2} → ‘1’

{v3, v4, v5} → ‘0’
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Moving object classification when M = 3

LOS:SVM LOS:NN NLOS:SVM NLOS:NN

Scenarios and ML models
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Figure: Classification accuracy of Case 1–3 in LOS and NLOS scenarios
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Moving object classification when M = 100

LOS:SVM LOS:NN NLOS:SVM NLOS:NN

Scenarios and ML models
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Figure: Classification accuracy of Case 1–3 in LOS and NLOS scenarios
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Conclusions

Presented ML algorithms for the classification of human and
non-human activities using wireless signals received at a massive
MIMO base station

Tested the methods on data obtained from a measurement
campaign conducted indoors, using the 100-antenna LuMaMi
massive MIMO testbed operating at 3.7 GHz carrier frequency

Classification performance when using all M = 100 antennas at the
base station was significantly better compared to when using only
M = 3 antennas

Due to the spatial resolution capabilities, massive MIMO technology
has the potential to significantly enhance the accuracy in wireless
sensing applications
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