Moving object classification with a sub-6 GHz massive MIMO array using real data

B. R. Manoj[†], G. Tian^{*}, S. Gunnarsson^{*}, F. Tufvesson^{*}, and E. G. Larsson[†]

[†] Department of Electrical Engineering (ISY), Linköping University, Linköping, Sweden * Department of Electrical and Information Technology, Lund University, Lund, Sweden

> IEEE ICASSP Virtual conference June, 2021

イロト イヨト イヨト イヨト 三日

Outline

Introduction System model Feature extraction Massive MIMO measurement setup Machine learning models Results

1 Introduction

2 System model

- Feature extraction
 Amplitude-based feature
 - Phase-based feature
- Massive MIMO measurement setup
- **5** Machine learning models

6 Results

Introduction

- Wireless-based activity sensing is evolving rapidly due to the interest in many applications such as intrusion detection, patient care, smart home, etc.
- Traditional human activity recognition systems
 - Achieved using cameras or motion sensors
 - Imposes inconvenience in wearing sensors and cameras require good lighting
- State-of-the-art: shown benefits of utilizing wireless signals with only WiFi devices for activity sensing
 - Non line-of-sight (NLOS)/line-of-sight (LOS) identification
 - Human presence detection
 - Classification of human activities

イロン イボン イモン イモン 三日

Introduction

- Received signal strength (RSS): limited accuracy
- Channel state information (CSI): reveals the multipath features of the channel at the granularity of the OFDM subcarriers
- Machine learning (ML)-based approaches: widely used in numerous applications due to their ability to learn the statistical patterns from the CSI
- Limitations of WiFi-based activity sensing
 - Performance is limited since the devices typically are equipped with two or three antennas
 - Difficulties in exploiting statistical patterns in the spatial domain and degraded accuracy especially in NLOS conditions

イロト イヨト イヨト イヨト 三日

Problem statement and contributions

- Objective is to show the potential of using massive MIMO for wireless sensing applications with machine-learning algorithms
- We use real data from a massive MIMO system to exploit the advantages of the spatial domain
- Proposed algorithms to extract features from the amplitude and phase information of the measured massive MIMO data
- Efficiently classify moving objects in LOS and NLOS scenarios by using ML models

Figure: Measurement setup for activity sensing

- Uplink narrow band massive MIMO OFDM system with multiple UEs
- Received signal matrix $\mathbf{Y}_f \in \mathbb{C}^{M \times N}$

$$\mathbf{Y}_f = \mathbf{H}_f \odot \mathbf{\Gamma}_f + \mathbf{N}_f$$

- Subcarrier f ∈ [1, F], radio-frequency (RF)-chain m ∈ [1, M], snapshot n ∈ [1, N], and H_f ∈ C^{M×N} is the complex-valued channel matrix
- Difficult to precisely model **H**_f due to unknown positions of the UEs and the environment as well as unknown Doppler shifts caused by unpredictable speeds and directions of different moving objects

• Frequency response of the RF chains $\mathbf{\Gamma}_f \in \mathbb{C}^{M \times N}$, each element is defined as

$$\mathbf{\Gamma}_f(m,n) = d_m e^{j(\alpha_m - n \epsilon_{m,f})}$$

- d_m = amplitude scaling, α_m = initial phase offset, $\epsilon_{m,f}$ = carrier frequency offset
- $\mathbf{N}_f \in \mathbb{C}^{M \times N}$ = noise for the *f*-th subcarrier
- $\mathcal{Y} \in \mathbb{C}^{F \times M \times N}$ = received data for a total of F subcarriers

Amplitude-based feature Phase-based feature

Feature extraction

- Challenging to apply traditional detection and estimation theory since we do not have a physically accurate signal model
- Motivated to exploit the statistical features that can be efficiently used by ML models
- $\bullet\,$ ML models can operate with raw I/Q samples: requires a huge data set for training the models
- We therefore, exploit features from a real data set to reduce the dimensionality, which significantly reduces the training data set

Amplitude-based feature Phase-based feature

Data pre-processing

- Linear interpolation: to overcome sampling jitter during measurements
- Wavelet-based denoising method: to eliminate random noise present in the data

Amplitude-based feature Phase-based feature

Amplitude-based feature

Input: $|\mathcal{Z}| \in \mathbb{R}^{F \times M \times N}$ and T_w , **Output:** Amplitude feature, \mathcal{A} for n = 1 to N do Define $\mathbf{B}_n \in \mathbb{R}^{F \times M}$, as the matrix obtained from $|\mathcal{Z}|$ at time n:

$$\mathbf{B}_n = [\mathbf{b}_n(1), \ldots, \mathbf{b}_n(F)]^{\mathrm{T}}, \ \mathbf{b}_n(f) \in \mathbb{R}^M, \ f \in [1, F].$$

end

Define $\mathbf{D} \in \mathbb{R}^{FM \times N}$, as the matrix obtained from vectorizing the matrices \mathbf{B}_n , $n \in [1, N]$: $\mathbf{D} = [\operatorname{vec}(\mathbf{B}_1), \operatorname{vec}(\mathbf{B}_2), \dots, \operatorname{vec}(\mathbf{B}_N)]$. for j = 1 to N/T_w do $\mathbf{E} = [\mathbf{D}(1), \mathbf{D}(2), \dots, \mathbf{D}(T_w)]$, $\mathbf{E} \in \mathbb{R}^{FM \times T_w}, \mathbf{D}(i) \in \mathbb{R}^{FM \times 1}, i \in [1, T_w]$. Determine the inner product: $\mathbf{S} = \mathbf{E}^T \mathbf{E}, \mathbf{S} \in \mathbb{R}^{T_w \times T_w}$. Perform eigenvalue decomposition: $\mathbf{S} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^T$. $\mathbf{g}_j = \text{Sort the eigenvalues in the descending order. Discard the first eigenvalue and store the rest.$ $Slide <math>T_w$ in \mathbf{D} and repeat the calculations of \mathbf{S} and $\mathbf{\Sigma}$.

end

$$\begin{split} \boldsymbol{\mathsf{G}} &= \left[\boldsymbol{\mathsf{g}}_1, \boldsymbol{\mathsf{g}}_2, \dots, \boldsymbol{\mathsf{g}}_{N/\mathcal{T}_W}\right]^{\mathrm{T}} \\ \mathcal{A} &= \mathbb{E}[\boldsymbol{\mathsf{G}}], \text{ where } \mathbb{E}[\cdot] \text{ is the expectation operator} \end{split}$$

Amplitude-based feature Phase-based feature

Phase-based feature

Amplitude-based feature Phase-based feature

Phase-based feature

- For a static scenario, only minor phase changes are expected due to measurement noise
- For dynamic events, the phase of **H**_f changes more rapidly across the snapshots due to Doppler shifts
- The phase of \(\mathbf{\Gamma}_f(m, n)\) increases or decreases linearly with snapshots due to the CFO across the subcarriers
- We perform linear regression on the unwrapped phase of $\mathcal Y$ for each f and m across all snapshots

Amplitude-based feature Phase-based feature

Phase-based feature

- $\hat{\mathcal{Y}}$: unwrapped phase of \mathcal{Y}
- $\boldsymbol{\xi} = [1, 2, ..., N]^{\mathrm{T}} \in \mathbb{R}^{N}$: indexes of the snapshots
- $\mathbf{1}_{N} \in \mathbb{R}^{N}$: unit vector

•
$$\mathbf{\Psi} \in \mathbb{R}^{N imes 2}$$
 as $\mathbf{\Psi} = [\mathbf{1}_N, \, m{\xi}]$

end

Define $\mathbf{Q} \in \mathbb{R}^{F \times M}$, where the *f*-th row and *m*-th column of \mathbf{Q} is $q_{f,m}$. Calculate the pairwise column correlation of $\mathbf{Q} : \tilde{\mathbf{S}} \in \mathbb{R}^{M \times M}$. Perform eigenvalue decomposition: $\tilde{\mathbf{S}} = \tilde{\mathbf{U}} \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{U}}^{\mathrm{T}}$. Sort the eigenvalues in the descending order and discard the first eigenvalue. The rest are stored in

 $\ensuremath{\mathcal{P}}$ as the phase-based features.

イロト イボト イヨト イヨト 二日

• Measurement campaign: indoor laboratory environment at Lund University, to capture samples under both LOS and NLOS scenarios

- Dynamic events: waving an aluminium foil balloon, spinning a bike wheel, spinning and moving a bike wheel, and human dancing
- Samples were also collected in static environments
- For each of the static and dynamic events, 18 experiments were conducted, resulting in a total of 90 experiments

イロン イボン イヨン トヨ

Massive MIMO measurements

- BS: Lund University massive MIMO testbed (LuMaMi)
- Software-defined radio-based testbed that operates in OFDM-mode with 100 antennas connected to 100 transceiver chains at a carrier frequency of 3.7 GHz with 20 MHz of bandwidth
- Antenna elements are separated half a wavelength apart and arranged in four rows of 25 elements each
- UEs consist of an USRP with two transceiver chains and are equipped with either one or two dipole antennas
- Each measurement and active UE transceiver chain: 100 frequency points and 3000 snapshots over 30 seconds were collected, this constituting one experiment

Machine learning models

Classifier model

$$f(\mathbf{x}; \boldsymbol{ heta}) : \mathbf{x} \in \mathcal{X}
ightarrow \mathbb{R}^2$$

- Input $\textbf{x} = [\mathcal{A}, \mathcal{P}]$ is a combination of the amplitude and phase-based features
- Classical supervised ML: Implemented using the SVM model by utilizing the package *sklearn* with the kernel type *linear*
- Feedforward neural network

Table: NN architecture with trainable parameters of 3,576

	Size	Parameters	Activation function
Input: $[A, P]$	12	-	-
Layer 1 (Dense)	64	832	elu
Layer 2 (Dense)	32	2080	elu
Layer 3 (Dense)	16	528	elu
Layer 4 (Dense)	8	136	elu
Layer 5 (Dense)	2	18	softmax

イロン イボン イモン イモン 三日

- Measurement events
 - v_1 : static, v_2 : human dancing, v_3 : spinning bike wheel, v_4 : waving of an aluminium foil balloon, and v_5 : spinning and moving bike wheel
- Classification problems

Table:	Classification	of	different	moving	objects
--------	----------------	----	-----------	--------	---------

Cases	Classifications	Labels	
1	Between $\{v_2, v_3, v_4, v_5\}$ and $\{v_1\}$	$\{v_2, v_3, v_4, v_5\} \rightarrow `1'$	
		$\{v_1\} ightarrow$ '0'	
2	Between $\{v_2\}$ and $\{v_3\}$	$\{v_2\} ightarrow$ '1'	
		$\{v_3\} ightarrow$ '0'	
3	Between $\{v_2\}$ and $\{v_3, v_4, v_5\}$	$\{v_2\} ightarrow$ '1'	
		$\{v_3, v_4, v_5\} \rightarrow 0'$	

・ロト・日本・日本・日本・日本・日本・日本

18/22

Figure: Classification accuracy of Case 1-3 in LOS and NLOS scenarios

Figure: Classification accuracy of Case 1–3 in LOS and NLOS scenarios

Conclusions

- Presented ML algorithms for the classification of human and non-human activities using wireless signals received at a massive MIMO base station
- Tested the methods on data obtained from a measurement campaign conducted indoors, using the 100-antenna LuMaMi massive MIMO testbed operating at 3.7 GHz carrier frequency
- Classification performance when using all M = 100 antennas at the base station was significantly better compared to when using only M = 3 antennas
- Due to the spatial resolution capabilities, massive MIMO technology has the potential to significantly enhance the accuracy in wireless sensing applications

Thank you

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ 22/22