
• Variational Training for Bayesian Transformer LMs:
• Lower bound is approximation of marginal likelihood:
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• 𝑞 𝚯 and 𝑝!(𝚯) are assumed to be diagonal Gaussian 
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• Allowing KL term L2 to be in a differentiable close form 
• Monte Carlo sampling used to approximate the marginal L2
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• With re-parameterization used when sampling 𝚯&
𝚯& = 𝝁 + 𝝐𝒌⊙𝝈, 𝝐𝒌~𝒩(𝟎, 𝑰)

• Estimation of variaitional distribution parameters \mu, \sigma 
integrated with SGD based back propagation 
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Experiments on Conversational Telephone Speech
• Datasets: 300 hour Switchboard for acoustic modelling; 34M words of Switchboard+Fisher

transcriptions for language modelling; 30k vocabulary lexicon.
• Acoustic model: TDNN-F based hybrid model featuring speech perturbation, i-Vector, LHUC 

speaker adaptation and (LF-MMI) sequence training

• Proposed Bayesian Transformer LMs (line 11-13) outperform the baseline Transformer LM(line 2)
in terms of both PPL and WER by statistically significant margin from 0.3% to 0.5% absolutely

• Applying Bayesian estimation on the feed forward (FF) module outperforms using Bayesian 
estimation on multi-head self-attention (MHA) or embedding (EMB) layer

• Compared with applying Bayesian estimation to multiple Transformer blocks (line 6-10), adopting
Bayesian estimation on the lowest Transformer block (line 5) produced the best PPL and WER

• Decoder component of Transformer architecture was adopted for LM 
• Stacking of multi-head self-attention modules:
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𝒛)+ = LayerNorm(𝒚)+ )
• x./ denotes the input of the 𝑙-th Transformer block
• ℎ)+ stores cached key-value pairs up to word position 𝑡, enforcing left 

to right attention modelling over history contexts only 
• Feed forward blocks following each self-attention module:

𝒔)+ = 𝑾0
+ 𝐺𝐸𝐿𝑈 𝑾$

+ 𝑧)+ + 𝒛)+
𝒙)+ = LayerNorm(𝒔)+ )

• For simplicity, the bias vectors are omitted in the above equations

• Implementation details
• Applying Bayesian estimation on part of the model parameters
• Parameters obtained from standard Transformer LM is used as 

the prior’s mean 𝝁!, prior’s variance is set to be 1
• Only use the mean of the Bayesian parameters in evaluation
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Motivation
• State-of-the-art neural language models (LMs) represented by 

Transformers are highly complex
• Fixed parameter estimates fail to account for model uncertainty
• Prone to over-fitting when given limited training data
Our work:
• Propose a full Bayesian learning framework to account for model 

uncertainty in Transformer LM estimation
• Adopt efficient variational inference based approach to estimate the 

latent parameter posterior distribution
• Detailed analysis on the effect of applying Bayesian estimation on 

different parts of Transformer LM

• The proposed Bayesian learning framework can improve the performance and robustness of 
Transformer LMs in both model training and adaptation.

• The  parameters associated with the higher Transformer blocks are expected to be more 
deterministic than those experienced in the lower

• Variational learning for Bayesian Transformer LMs:
• Lower bound is approximation of marginal likelihood:
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• 𝒟 represents	the	whole	training	set	for	model	development
• 𝑞 𝚯 denotes	the	variational	approximation	of	parameter	
posterior	distribution	𝑝 𝚯|𝒟

• 𝑝!(𝚯) denotes	the	prior	distribution	of	𝚯
• 𝑞 𝚯 and 𝑝!(𝚯) assumed to be diagonal Gaussian 

𝑞 𝚯 ~𝑁 𝚯;𝝁, 𝝈 , 𝑝! 𝚯;𝝁! , 𝝈!
• Allowing KL term to be in a differentiable close form 
• Monte Carlo sampling used to approximate the marginal 

likelihood ℒ$:
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• With re-parameterization used when sampling 𝚯&
𝚯& = 𝝁 + 𝝐𝒌⊙𝝈, 𝝐𝒌~𝒩(𝟎, 𝑰)

• Estimation of variaitional distribution parameters 𝝁, 𝝈
integrated with SGD based back propagation
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• Performance improvements consistently obtained on a cross domain LM adaptation task requiring 
porting a Transformer LM trained on the Switchboard and Fisher data to a low-resource 
DementiaBank elderly speech corpus.


