

BAYESIAN TRANSFORMER LANGUAGE MODELS FOR SPEECH RECOGNITION

1. Introduction

Motivation

- State-of-the-art neural language models (LMs) repr Transformers are highly complex
- Fixed parameter estimates fail to account for model
- Prone to over-fitting when given limited training da

Our work:

- Propose a full Bayesian learning framework to acco uncertainty in Transformer LM estimation
- Adopt efficient variational inference based approact latent parameter posterior distribution
- Detailed analysis on the effect of applying Bayesian different parts of Transformer LM

Decoder component of Transformer architecture wa Stacking of multi-head self-attention modules:

$$q_t^i, k_t^i, v_t^i = Q x_t^{l-1}, K x_t^{l-1}, V x_t^{l-1}$$

$$m{h}_t^l = ig(m{h}_{t-1}^l,ig(m{k}_t^l,m{v}_t^lig)ig)$$

 $\boldsymbol{y}_{t}^{l} = \boldsymbol{W}_{h}^{l} \text{SelfAttention} \left(\boldsymbol{h}_{t}^{l}, \boldsymbol{q}_{t}^{l} \right) + \boldsymbol{x}_{t}^{l-1}$

$$\mathbf{z}_t^l = \text{LayerNorm}(\mathbf{y}_t^l)$$

- x_t^l denotes the input of the *l*-th Transformer block
- h_t^l stores cached key-value pairs up to word position to right attention modelling over history contexts or
- Feed forward blocks following each self-attention n $\mathbf{s}_{t}^{l} = \mathbf{W}_{2}^{l} GELU(\mathbf{W}_{1}^{l} z_{t}^{l}) + \mathbf{z}_{t}^{l}$

$$\mathbf{x}_{t}^{l} = \text{LayerNorm}(\mathbf{s}_{t}^{l})$$

• For simplicity, the bias vectors are omitted in the ab

Boyang Xue, Jianwei Yu, Junhao Xu, Shansong Liu, Shoukang Hu, Zi Ye, Mengzhe Geng. Xunying Liu, Helen Meng

{byxue,jwyu,jhxu,ssliu,skhu,zye,mzgeng,xyliu,hmmeng}@se.cuhk.edu.hk

versity of Hong Kong, Hong Kong SAR, China

	The Chinese Univ
	3. Bayesian Transformer LM
resented by	 Variational learning for Bayesian Lower bound is approximation or
l uncertainty ata	$\log P(\mathcal{D}) = \log \int P(\mathcal{D})$
ount for model	$\geq \sum_{n=1}^{N} \log \int P(W^n \Theta) q(\Theta) d\Theta$
ch to estimate the	\mathcal{L}_1
n estimation on	 D represents the whole trainin q(Θ) denotes the variational apposterior distribution p(Θ D) m (Θ) denotes the prior distribution
Output Layer Transformer	 <i>p_r</i>(Θ) denotes the prior distributes of <i>q</i>(Θ) and <i>p_r</i>(Θ) assumed to be <i>d q</i>(Θ)~<i>N</i>(Θ; <i>μ</i>, <i>σ</i>), Allowing KL term to be in a difference of the sampling used to applikelihood <i>L</i>₁: <i>L</i> ≈ -<i>KL</i>(<i>q</i>(Θ) <i>p_r</i>(Θ)) + ¹/_K With re-parameterization used w Θ_k = <i>μ</i> + <i>ε</i>_k ⊙ <i>σ</i>, Estimation of variational distribution integrated with SGD based back
Bayes Transformer Embedding Layer	$\frac{\partial \mathcal{L}}{\partial \mu_i} = \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{L}_1}{\partial \mu_i} - \frac{\mu_i}{K}$
as adopted for LM	$\frac{\partial \mathcal{L}}{\partial \sigma_i} = \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{L}_1}{\partial \sigma_i} - \frac{1}{K} \sum_{k=1}^$
on <i>t</i> , enforcing left nly module:	 Implementation details Applying Bayesian estimation of Parameters obtained from standar the prior's mean µ_r, prior's variate Only use the mean of the Bayesian P(w_t w₁,w_{t-1}) = ∫ P(w_t w₁,w_{t-1}) = ∫ P(w_t w₁,w_{t-1})
bove equations	• This research is supported by Hong Kon

ng RGC GRF grant No. 14200218, 14200220, Theme-based Research Scheme T45-407/19N, Innovation & Technology Fund grant No. ITS/254/19, and Shun Hing Institute of Advanced Engineering grant No. MMT-p1-19.

Transformer LMs:

of marginal likelihood:

 $(\mathbf{\Theta}) p_r(\mathbf{\Theta}) d\mathbf{\Theta}$

 $\Theta - KL(q(\Theta)||p_r(\Theta)) = \mathcal{L}$

ng set for model development pproximation of parameter

oution of **O** diagonal Gaussian

 $p_r(\boldsymbol{\Theta}; \boldsymbol{\mu}_r, \boldsymbol{\sigma}_r)$ ferentiable close form pproximate the marginal

$\log P(\boldsymbol{W}|\boldsymbol{\Theta}_k)$

when sampling $\boldsymbol{\Theta}_k$ $\epsilon_k \sim \mathcal{N}(\mathbf{0}, I)$ pution parameters μ, σ propagation

 $u_i - u_{r,i}$

 $\sum k=1$

 σ_i^2

 $^{2} - \sigma_{r_{\perp}}^{2}$

n part of the model parameters ard Transformer LM is used as ance is set to be 1 ian parameters in evaluation

 $v_1, \dots w_{t-1}, \Theta) p(\Theta | D) d\Theta$

 (w_{t-1}, Θ_{mean})

4. Experiments & Results

Experiments on Conversational Telephone Speech

- transcriptions for language modelling; 30k vocabulary lexicon.
- speaker adaptation and (LF-MMI) sequence training

ID	IM	Ba	yesian	PPL	eval	2000		rt02		rt()3
	LIVI	Block	Position	(swbd)	swbd	callhm	swbd1	swbd2	swbd3	fsh	swbd
1	4gram	Not 2	Applied	-	9.7	18.0	11.5	15.3	20.0	12.6	19.5
2	Transformer(+4g)	Not a	Applied	41.50	7.9	15.7	9.5	12.8	17.4	10.4	17.3
3		-	EMB	41.01	7.7	15.6	9.5	12.6	17.1 [†]	10.2	17.1^{+}
4		1	MHA	40.95	7.7	15.5	9.5	12.5^{\dagger}	17.1^{+}	10.2	17.1^{+}
5		1	FF	40.65	7.7	15.4^{\dagger}	9.4	12.6^{\dagger}	17.0^{+}	10.2^{\dagger}	17.0^{\dagger}
6	Bayes Transformer($\pm 4\sigma$)	1-2	FF	41.11	7.7	15.6	9.5	12.6	17.2	10.3	17.1
7	Dayes mansformer(++g)	1-3	FF	42.45	7.8	15.8	9.5	12.7	17.2	10.3	17.2
8		1-4	FF	47.54	8.0	16.0	9.9	13.0	17.6	10.7	17.5
9		1-5	FF	54.19	8.3	16.2	10.2	13.5	18.0	11.1	18.0
10		1-6	FF	74.50	8.9	17.3	10.8	14.3	18.7	12.0	18.8
11		-	EMB	40.03	7.7	15.5	9.4	12.6†	17.1^{\dagger}	10.1 [†]	17.0^{\dagger}
12	+Transformer(+4g)	1	MHA	39.70	7.6 [†]	15.4^{\dagger}	9.3	12.5	17.0 [†]	10.1^{+}	16.9 [†]
13		1	FF	39.42	7.6 [†]	15.2 [†]	9.3	12.5 [†]	17.0 [†]	10.1^{+}	16.9 [†]

estimation on multi-head self-attention (MHA) or embedding (EMB) layer

Compared with applying Bayesian estimation to multiple Transformer blocks (line 6-10), adopting Bayesian estimation on the lowest Transformer block (line 5) produced the best PPL and WER

DementiaBank elderly speech corpus.

5. Conclusions

Transformer LMs in both model training and adaptation. deterministic than those experienced in the lower

Paper Number: 1539

• Datasets: 300 hour Switchboard for acoustic modelling; 34M words of Switchboard+Fisher

• Acoustic model: TDNN-F based hybrid model featuring speech perturbation, i-Vector, LHUC

Proposed Bayesian Transformer LMs (line 11-13) outperform the baseline Transformer LM(line 2) in terms of both PPL and WER by statistically significant margin from 0.3% to 0.5% absolutely Applying Bayesian estimation on the feed forward (FF) module outperforms using Bayesian

ID	LMs	Adapt	PPL	WER(%)
1	4gram	X	17.07	30.67
2	Transformer(14a)	×	21.83	30.65
3	Transformer(+4g)	fine-tuning	14.56	30.25
4	Pauce Transformar(14a)	X	19.88	30.49
5	Bayes fransformer(+4g)	bayes-adapt	13.99	29.88 [†]

• Performance improvements consistently obtained on a cross domain LM adaptation task requiring porting a Transformer LM trained on the Switchboard and Fisher data to a low-resource

• The proposed Bayesian learning framework can improve the performance and robustness of

• The parameters associated with the higher Transformer blocks are expected to be more