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1. Outline 3b. CNN & Combined Architectures 4a. Results
e Audio classification tasks traditionally discard e Architecture based on [1] that yielded strong results on the IRMAS Dataset. CNN cell: 2 stacked e A simple RNN cannot sufficiently decode the
direct waveform modeling for expensive identical 1D convolutional layers, Batch Normalization, Leaky RelLU activation and a max pooling layer. iInformation, while 1D CNNs are performing
time-frequency feature representations. e This module is followed by 2 fully connected layers (DCNN) — increases substantially the number of almost as well as 2D CNNs on spectrograms.
e We propose a lightweight end-to-end classifier its trainable parameters — we experiment by removing dense layers (FCN). e Removing the dense layers reduces the
for Instrument Classification by parameterizing e Residual FCN: embed skip connections to the previous model, to propagate low-level features. number of trainable parameters and increases
RNN and CNN networks to model raw audio accuracy substantially (spatial correlations).
waveforms with comparable performance. B Models Fl-micro % | Fl-macro % = LRAP %
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§ —-———— v Figure: The DCNN, FCN and RFCN architectures used in the experimental evaluation e Comparable results to literature with reduced
0 W o "' | e CNNs concentrate on spatial features and, in the context of waveforms, on temporally local number of model trainable parameters.
i m @ @ T correlations, while recurrent ones are useful in modeling longer-term temporal structure. Models F1-micro F1-macro LRAP
: : : : : Bosch et al. [2] 0.503 0.432 -
Figure: Intermediate activation of the RECN for piano e Combined RCNN: We attach the best performing BIGRU model into our RFCN.
Pons et al. [3] 0.589 0.516 -
2. Experimental Setup 4b. Instrument-wise Analysis Han et al. [4] 0.602  0.503 -
Kratimenos et al. [1] 0.616 @ 0.506 0.767
e IRMAS [2] is used to train and test our models. e We examine the class-wise performance in terms of the F1 metric. The results are visualized along [1] Reduced 0.520 @ 0.458 0.689
Separate splits with 11 annotated instruments. with the corresponding results obtained from CQT spectrogram modeling from our previous work [1]. Proposed 0.608 0.543 0.747
e 5-fold cross-validation, batch size 64 e Brass instruments (clarinet, flute, saxophone) are recognized much better using raw waveforms.

e BCE Loss for multi-label classification, Adam e Predominant instruments, i.e. guitars, piano or voice, are distinguished better through CQT models.
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