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Background

State-of-the-art generative models are able to reach impressive results at the cost of millions of
parameters which require huge computational resources.

Real-valued networks process image channels as independent elements, not considering intra-
channels relations and correlation.
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Motivations: making deep models more accessible

Quaternion neural networks (QNNs) [1, 2, 3] allow to reduce the number of parameters by sharing
quaternion-weight components through multiple quaternion-input parts.

QNNs process image channels as a single entity and grasp internal latent information, preserving
intra-channels relations, thanks to the Hamilton product.

[1] P. Arena, L. Fortuna, L. Occhipinti, and M. G. Xibilia, “Neural networks for quaternion-valued function approximation,” in IEEE Int. Symp. on Circuits and Syst. (ISCAS),
(London, UK), pp. 307–310, May 1994

[2] C. Gaudet and A. Maida, “Deep quaternion networks,” in IEEE Int. Joint Conf. on Neural Netw. (IJCNN), July 2018

[3] T. Parcollet, M. Morchid, and G. Linarès, “A survey of quaternion neural networks,” Artif. Intell. Rev., Aug. 2019

Eleonora Grassucci A Quaternion-Valued Variational Autoencoder 3 / 17



Our lead character

The core of the quaternion-valued domain H is the quaternion number:

q = qa + qb ı̂ + qcȷ̂ + qdκ̂ = qa + q. (1)

The imaginary units comply with the property:

ı̂2 = ȷ̂2 = κ̂2 = −1 (2)

Quaternions are not commutative under the operation of vector multiplication:

ı̂ȷ̂ = −ȷ̂̂ı , ȷ̂κ̂ = −κ̂ȷ̂ , κ̂ı̂ = −ı̂κ̂. (3)
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Hamilton product for quaternion convolutions

In deep quaternion neural networks, the quaternion convolution is performed through the
Hamilton product:

W ⊗ q = (Waqa − Wbqb − Wcqc − Wdqd)

+ (Waqb + Wbqa + Wcqd − Wdqc) ı̂

+ (Waqc − Wbqd + Wcqa + Wdqb) ȷ̂

+ (Waqd + Wbqc − Wcqb + Wdqa) κ̂

(4)

The quaternion convolution allows to capture internal latent relations within the features of a
quaternion.
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Quaternion layers

The forward phase for a generic quaternion fully connected layer can be defined as:

y = α (W ⊗ x + b) (5)

where y is the output of the layer, b is the quaternion-valued bias offset and α is any quaternion
split activation function:

α (q) = f (qa) + f (qb) + f (qc) + f (qd) . (6)

Deep QCNN may also involve other operations in the quaternion domain, like pooling and batch
normalization [4].

[4] R. Vecchi, S. Scardapane, D. Comminiello, and A. Uncini, “Compressing deep-quaternion neural networks with targeted regularisation,” CAAI Trans. Intell. Technol., vol. 5,
pp. 172–176, Sept. 2020
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Image processing with quaternion neural networks
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Figure 1: Image processing with real-valued CNN (top) and quaternion-valued QCNN (bottom).
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Augmented second-order statistics

Second-order statistics in the quaternion domain involve the definition of the augmented
covariance matrix C̃qq. Further details can be found in the paper.

C̃qq = E
{

q̃q̃H}
=


Cqq Cqqı̂ Cqqȷ̂ Cqqκ̂

CH
qqı̂ Cqı̂qı̂ Cqı̂qȷ̂ Cqı̂qκ̂

CH
qqȷ̂ Cqȷ̂qı̂ Cqȷ̂qȷ̂ Cqȷ̂qκ̂

CH
qqκ̂ Cqκ̂qı̂ Cqκ̂qȷ̂ Cqκ̂qκ̂

 (7)
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Second-order statistics and Q-Properness

For Q-proper distributions, C̃qq is a diagonal matrix:

C̃qq = E
{

q̃q̃H}
=


Cqq 0 0 0

0 Cqı̂qı̂ 0 0
0 0 Cqȷ̂qȷ̂ 0
0 0 0 Cqκ̂qκ̂

 (8)

The diagonal contains the covariance matrices of the quaternion input and its involutions.

Eleonora Grassucci A Quaternion-Valued Variational Autoencoder 9 / 17



Quaternion VAE architecture
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Figure 2: Quaternion-valued variational autoencoder architecture (QVAE). The quaternion encoder learns the quaternion mean µq

and the augmented covariance matrix C̃qq to build the latent representation. The quaternion decoder reconstruct the 4-channel
image. The PyTorch implementation of the QVAE is available online at https://github.com/eleGAN23/QVAE.
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1 Experimental Results



Reconstruction task
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Figure 3: Original test set and reconstructed samples sets from plain VAE and proposed QVAE.
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Generation task
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Figure 4: Generated fake image samples from the plain VAE and the proposed QVAE.
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Objective metrics results

Table 1: Averaged results from objective metrics on reconstruction (SSIM, MSE) and generation (FID) tasks.

SSIM↑ MSE↓ FID↓ # parameters↓

VAE 0.8492 0.0047 195.7 3,762,539
QVAE 0.8941 0.0031 175.7 1,404,996
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Conclusions

Moving neural networks from the real domain to the quaternion one allows the network to process
image channels as a whole element, capturing internal latent relations.

Quaternion layers reduces the number of parameters and memory consumption.

The plain QVAE shows promising results, generating better images with less than a half the
number of parameters with respect to the real-valued counterpart.
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Future works

Expand QVAE for Q-improper distributions.

Test more complex variational autoencoder in the quaternion domain.

Extend QVAE for other kind of signals such as audio.
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