SUREMap: Predicting Uncertainty in CNN-Based Image Reconstructions Using Stein's Unbiased Risk Estimate

Kao Kitichotkul¹, Christopher A. Metzler², Frank Ong¹, Gordon Wetzstein¹

¹Department of Electrical Engineering at Stanford University

²Department of Electrical Engineering at University of Maryland

Motivation (1)

- Convolutional neural networks (CNN) have emerged as a powerful tool for solving compressive sensing (CS) reconstruction problems.
- However, CNNs are black boxes.

Motivation (2)

- Expected mean squared error (MSE) is the gold standard for evaluating a CS reconstruction algorithm.
- Computing MSE requires the ground truth, which defeats the point of reconstruction in the first place.

$$MSE = \frac{1}{n} ||\hat{x} - x||^2$$

Squared difference $(\hat{x} - x)^2$

Motivation (3)

- We can estimate MSE without requiring the ground truth using Stein's Unbiased Risk Estimate (SURE) for CS reconstruction with Approximate Message Passing (AMP) framework.
- SURE works because AMP decouples the CS reconstruction into a series of Gaussian denoising problems.

SURE with Denoising-based AMP (D-AMP) (1)

- Problem setting: $y = Ax + \eta$, estimate x with \hat{x} .
 - $x \in \mathbb{R}^n$ ground truth, $y \in \mathbb{R}^m$ measurement, m < n.
 - $\eta \in \mathcal{N}(0, \sigma^2 I_m)$ Gaussian noise.
- At iteration t of D-AMP, we solve $r_t = x + \eta_t$. The solution is $f(r_t) = \hat{x}$ where f is a (possibly CNN-based) denoiser.
 - $\eta_t \in \mathcal{N}(0, \sigma_t^2 I_m)$ Gaussian noise.

Algorithm 1: AMP
Input : Observation $\mathbf{y} \in \mathbb{R}^m$, Denoiser $f(\cdot)$,
Measurement matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$
Output: Reconstructed image $\hat{\mathbf{x}}$
Initialize $\mathbf{x}_0 = 0_n$, $\mathbf{z}_0 = \mathbf{y}$;
for $t = 0,, T - 1$ do
$ \mathbf{r}_t = \mathbf{x}_t + \mathbf{A}^T \mathbf{z}_t$
$\hat{\sigma}_t = \ \mathbf{z}_t\ _2 / \sqrt{m}$
$\mathbf{x}_{t+1} = f(\mathbf{r}_t; \hat{\sigma}_t)$
$\begin{vmatrix} \mathbf{z}_{t+1} = \mathbf{y} - A\mathbf{x}_{t+1} + \frac{1}{m} \operatorname{div}_{\mathbf{r}_{t}}(\mathbf{x}_{t+1}) \mathbf{z}_{t} \end{vmatrix}$
end
return \mathbf{x}_T

SURE with Denoising-based AMP (D-AMP) (2)

•
$$MSE = \frac{1}{n} ||f(r_t) - x||^2$$

• SURE =
$$\frac{1}{n} ||f(r_t) - r_t||^2 + \frac{2\sigma_t^2}{n} div_{r_t}(f(r_t)) - \sigma_t^2$$

• Calculate the divergence using a Monte-Carlo estimate.

$$\operatorname{div}_{\mathbf{r}_{T}}\left(\hat{\mathbf{x}}\right) \approx \frac{1}{K} \sum_{k=1}^{K} \frac{1}{\epsilon} \mathbf{b}_{k}^{T} \left(f(\mathbf{r}_{T} + \epsilon \mathbf{b}_{k}) - f(\mathbf{r}_{T})\right) \quad \mathbf{b}_{k} \sim \mathcal{N}(0, \mathbf{I_{n}})$$

• $\mathbb{E}[MSE] = \mathbb{E}[SURE]$

Patch-wise Calculation

- Average overlapping patches of SURE to obtain a SURE map.
- SURE map is equivalent to lowpass-filtered map of squared error.

Noisy image r_t

Denoised image $f(r_t)$

Squared difference $(\hat{x} - x)^2$

SURE map

SURE with Denoising-based VDAMP (D-VDAMP) (1)

- VDAMP (Millard et al.) extends AMP to variable density Fourier measurements as in MRI.
- Problem setting: $y = M(Fx + \eta)$, estimate x with \hat{x} .
 - *M* undersampling mask, *F* Fourier transform
- At each iteration of D-VDAMP, we solve

 $\mathbf{r}_t = \mathbf{x} + \eta_t \qquad \qquad \eta_t \sim \mathcal{CN}(0, \boldsymbol{\Psi}^t \operatorname{diag}(\tau_t) \boldsymbol{\Psi})$

to obtain $f(r_t) = \hat{x}$.

SURE with Denoising-based VDAMP (D-VDAMP) (2)

•
$$MSE = \frac{1}{n} ||f(r_t) - x||^2$$

• SURE $S(\hat{\mathbf{x}}, \mathbf{r}_T) = ||\hat{\mathbf{x}} - \mathbf{r}_T||^2 - \sum_{i=1}^n \tau_T^{(i)}$ $\mathbf{u} = \Psi \operatorname{diag} \left(\frac{1}{2}\tau_t\right)^{-1} \Psi^t \mathbf{r}_T$
 $+ \frac{2}{n} \left(\operatorname{div}_{\Re(\mathbf{u})} \left(\Re(\hat{\mathbf{x}})\right) + \operatorname{div}_{\Im(\mathbf{u})} \left(\Im(\hat{\mathbf{x}})\right)\right)$

• $\mathbb{E}[MSE] = \mathbb{E}[SURE]$

Experimental Results

Accuracy-Resolution Tradeoff

Ground truth

MSE

Reconstruction

Conclusion

- We can estimate per-pixel MSE of CS reconstruction with AMP + black-box denoiser without requiring ground truth.
- The accuracy-resolution tradeoff is a limitation to our approach.
- Usage of SURE heatmaps:
 - Inform end-users about the reliability of image reconstructions.
 - Serve as supplementary information for an artifact-removal algorithm.
 - Guide an adaptive sampling strategy.