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Motivation

® Provision of accurate CSI is a major challenge in wireless systems due to

® dynamic nature of the wireless channel
® estimation inaccuracy

® |imited feedback
[ ]

¥ |mperfect CSI must be taken into account in the system design

® We consider the general uncertainty model of block fading channels
¥ Capacity is known, but optimal signal processing and coding schemes remain unknown
in general

® Such optimal schemes have been found only for very few specific cases and accordingly,
common belief is that it is a hard problem to find them

In this work, we shed some new light upon this issue by
adopting an algorithmic perspective J




Overview Main Results

® \We address this issue from a fundamental algorithmic point of view by using the
concept of a Turing machine and the corresponding computability framework
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® \We address this issue from a fundamental algorithmic point of view by using the
concept of a Turing machine and the corresponding computability framework

¥ \We study algorithmic computability of the capacity

Perfect CSI Imperfect CSI
Capacity of discrete memoryless channels Capacity of averaged channels (ACs) is in
(DMCs) is computable: general non-computable:
C(W) eRe C(W) ¢ R,
for computable W € CH.(X;)). for computable W € AC.(X,S;)).




Birth of Information Age
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Fig. 1 — Schematic diagram of a general communication system.

® Claude Shannon laid the theoretical foundations for information theory, a mathematical
communication model

A mathematical theory of communication

@ C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379-423, Jul.
1948



Perfect Channel State Information

® Discrete memoryless channels (DMCs)
® Let X and Y with |X| < oo and |Y| < oo be finite input and output alphabets
® Probability law for DMCs is specified by the channel

"(y"z"™) HW Yil i)

¥ Belong to the class of independent and identically distributed (i.i.d.) channels which
represent the most tractable class of channel laws

The capacity C(WW) of a discrete memoryless channel (DMC) W is

cC(W) = m)?xI(X;Y) = pér;)a}i%)I(p, W)

@ C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379-423, Jul.
1948



Capacity

The capacity C(W) of a discrete memoryless channel (DMC) W is

C(W) = I(X;Y) = I(p,W
(W) rnaX( ) ) (p, W)

® [ntropic quantities

Single-letter

Convex optimization problem

Of particular relevance as it allows to compute the capacity C (W) as a function of the
channel W given by a convex optimization problem



Capacity

The capacity C(W) of a discrete memoryless channel (DMC) W is

C(W) = I(X;Y) = I(p,W
(W) maX( ) ) (p, W)

Entropic quantities

Single-letter

Convex optimization problem

Of particular relevance as it allows to compute the capacity C'(W) as a function of the
channel W given by a convex optimization problem

Can we compute the capacity algorithmically? )

@ C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379-423, Jul.
1948



1936: Birth of Computer Science

e Alan M. Turing was the first to study this kind of
problems systematically

® He developed a computing model

" Turing machine

® Object of interest: real numbers

El

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math.
Soc., vol. 2, no. 42, pp. 230-265, 1936

El

——, "On computable numbers, with an application to the Entscheidungsproblem. A correction,”

Proc. London
Math. Soc., vol. 2, no. 43, pp. 544-546, 1937



Turing Machine: The Most Powerful Computation Model

Tape

eee| | [ [ [ [ [ [ [ ][ ]eee
0 Read/Write Head

Mathematical model of an abstract machine that manipulates symbols on a strip of tape
according to certain given rules

B

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math.
Soc., vol. 2, no. 42, pp. 230-265, 1936

B

——, “On computable numbers, with an application to the Entscheidungsproblem. A correction,” Proc. London
Math. Soc., vol. 2, no. 43, pp. 544-546, 1937




Turing Machine (2)

Turing machines can simulate any given algorithm and therewith provide a simple but very
powerful model of computation.

® No limitation on computational complexity

Unlimited computing capacity and storage

Completely error-free execution of programs

® Most powerful programming languages are Turing-complete (such as C, C++, Java,
etc.)

All discrete computing models are equivalent

(von Neumann, Godel, Minsky, ...)

Any arbitrarily large finite-dimensional problem can be exactly solved without errors by a
Turing machine




Turing Machine (3)

Turing machines are suited to study the limitations in performance of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer,
regardless of how powerful it may be J

® Alan Turing introduced the concept of a computable real number in 1936, and
demonstrated some principal limitations of computability

® In 1949 a computable monotonically increasing sequence which converges to a real
non-computable number was constructed

[ A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math.
Soc., vol. 2, no. 42, pp. 230-265, 1936

[ ——, "On computable numbers, with an application to the Entscheidungsproblem. A correction,” Proc. London
Math. Soc., vol. 2, no. 43, pp. 544-546, 1937

E

E. Specker, “Nicht konstruktiv beweisbare Sitze der Analysis,” Journal of Symbolic Logic, vol. 14, no. 3, pp.
145-158, Sep. 1949



Computability of Numbers

Computable numbers are real numbers that are computable by Turing machines

Exact definition:

® A sequence {7y, }nen is called a computable sequence if there exist recursive functions
a,b,s : N — N with b(n) # 0 for all n € N and

Ty = (_1)s(n) CL(TL)

® A real number z is said to be computable if there exists a computable sequence of
rational numbers {7, },en such that

|lx —rp| <277

Key idea: effective approximation



Computability of Numbers

Computable numbers are real numbers that are computable by Turing machines J

Exact definition:

® A sequence {7y, }nen is called a computable sequence if there exist recursive functions
a,b,s : N — N with b(n) # 0 for all n € N and

Ty = (_1)5(71) a(n)

® A real number z is said to be computable if there exists a computable sequence of
rational numbers {7, },en such that

|z —rp| <277
Key idea: effective approximation

® R, computable real numbers
® Commonly used constants like e and 7 are computable



Computability of Distributions and Channels

® Based on this, we can define computable probability distributions and computable
channels

® We define the set of computable probability distributions P.(X’) as the set of all
probability distributions

p € P(X) such that p(z) € R, x € X

® Let CH.(X;)) be the set of all computable channels, i.e., for a channel

W : X — P(Y) we have W(-|z) € P.(Y) for every x € X




Computability of C'(W)

® Warm-up: Let’s see if for a computable channel W € CH,. the capacity C(W) is
computable...



Computability of C'(W)

® Warm-up: Let’s see if for a computable channel W € CH,. the capacity C(W) is
computable...

Let X and Y be arbitrary finite alphabets. Then for all computable channels W € CH,. we
have

C(W) = I(p, W) € R,.
(W) ) (p, W) € R,

" The capacity C (W) for a computable channel W € C#,. is computable and can be
algorithmically computed by a Turing machine!

B

K. Weihrauch, Computable Analysis - An Introduction. Berlin, Heidelberg: Springer-Verlag, 2000



Block Fading Channel

Transmitter w Receiver
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® Let S be an arbitrary state (uncertainty) set
e State s € S is unknown, but remains constant and follows the statistic ps € P(S)

The averaged channel (AC)
W = {{Ws € C?‘L(X9 y)}sESapS E 7D(‘S.)}

is given by the collection of all channels W, € CH(X;)) for all states s € S and additional
probability distribution pg € P(S) on the state set S.




Averaged Channel
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The capacity C'(W) of an averaged channel W is

C(W) = sup inf I(p, Wy)
pEP(X) SES

® Analytically well understood (closed-form single letter entropic expression)
® Surprisingly, not much known about its algorithmic computability and the optimal
signal processing
¥ Study its structure and algorithmic computability of optimal strategies

[ R. Ahlswede, “The weak capacity of averaged channels,” Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 11, pp.
61-73, Mar. 1968



Computability of C (W)

An ACW = {{Ws € CH(X;))}ses,ps € P(S)} is said to be computable if there is a
recursive function ¢ : & — CH.(X;Y) with ¢(s) = W, for all s € S and pg is a computable
probability distribution. The set of all computable ACs is denoted by AC.(X,S;)).

% The set W is algorithmically constructible, i.e., for every state s € S the channel T,
can be constructed by an algorithm with input s



Computability of C (W)

An ACW = {{Ws € CH(X;))}ses,ps € P(S)} is said to be computable if there is a
recursive function ¢ : & — CH.(X;Y) with ¢(s) = W, for all s € S and pg is a computable
probability distribution. The set of all computable ACs is denoted by AC.(X,S;)).

% The set W is algorithmically constructible, i.e., for every state s € S the channel T,
can be constructed by an algorithm with input s

Let X and Y be arbitrary finite alphabets. Then there is a computable averaged channel
W e AC.(X,S;)) such that

C(W) = sup inf I(p,W;) ¢ R..

" Although the channel itself is computable, i.e., W € AC.(X,S;)), it is not possible to
algorithmically compute C(W)!



Discussion

e Computability framework based on Turing machines
® Computability of capacities
% Capacity value of DMCs is computable: C'(W) € R,
b Capacity value of ACs is in general not computable: C(W) ¢ R..

® Search for capacity-achieving transmission schemes
® Goal: Turing machine T(n) = (E}, ¢) that outputs an optimal encoder E} and optimal
decoder ¢}, providing the maximal possible rate while guaranteeing error probability €
¥ Not possible in general for ACs!
(Note that it is not required that the Turing machine depends recursively on the channel;
it is only asked if it is possible to find such a search algorithm for a fixed and given
channel and error)

" Further studies on the algorithmic constructability of codes:

El

H. Boche, R. F. Schaefer, and H. V. Poor, “Turing meets Shannon: Algorithmic constructability of capacity-achieving
codes,” in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, Jun. 2021
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