Communication Over Block Fading Channels – An Algorithmic Perspective on Optimal Transmission Schemes

Holger Boche^{*}, **Rafael Schaefer**[†], and H. Vincent Poor[‡]

* Technical University of Munich Munich Center for Quantum Science and Technology (MCQST) Excellence Cluster Cyber Secuirty in the Age of Large-Scale Adversaries (CASA)

> [†] Chair of Communications Engineering and Security University of Siegen

> [‡] Department of Electrical and Computer Engineering Princeton University

IEEE International Conference on Acoustics, Speech and Signal Processing 2021 June 6-11, 2021

Motivation

- Provision of accurate CSI is a major challenge in wireless systems due to
 - dynamic nature of the wireless channel
 - estimation inaccuracy
 - limited feedback
 - ...
- Imperfect CSI must be taken into account in the system design
- We consider the general uncertainty model of *block fading channels*
- Capacity is known, but optimal signal processing and coding schemes remain unknown in general
- Such optimal schemes have been found only for very few specific cases and accordingly, common belief is that it is a hard problem to find them

In this work, we shed some new light upon this issue by adopting an *algorithmic perspective*

Overview Main Results

- We address this issue from a fundamental algorithmic point of view by using the concept of a *Turing machine* and the corresponding *computability framework*
- We study algorithmic computability of the capacity

Perfect CSI

Capacity of *discrete memoryless channels* (*DMCs*) is computable:

 $C(W)\in \mathbb{R}_c$

for computable $W \in \mathcal{CH}_c(\mathcal{X}; \mathcal{Y})$.

Imperfect CSI

Capacity of *averaged channels (ACs)* is in general non-computable:

 $C(\mathcal{W}) \notin \mathbb{R}_c$

for computable $\mathcal{W} \in \mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y}).$

- We address this issue from a fundamental algorithmic point of view by using the concept of a *Turing machine* and the corresponding *computability framework*
- We study algorithmic computability of the capacity

Perfect CSI

Capacity of *discrete memoryless channels* (*DMCs*) is computable:

 $C(W)\in \mathbb{R}_c$

for computable $W \in \mathcal{CH}_c(\mathcal{X}; \mathcal{Y})$.

Imperfect CSI

Capacity of *averaged channels (ACs)* is in general non-computable:

 $C(\mathcal{W})
otin \mathbb{R}_c$

for computable $\mathcal{W} \in \mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y}).$

Birth of Information Age

Fig. 1 – Schematic diagram of a general communication system.

- Claude Shannon laid the theoretical foundations for information theory, a mathematical communication model
 - A mathematical theory of communication

C. E. Shannon, "A mathematical theory of communication," *Bell Syst. Tech. J.*, vol. 27, no. 3, pp. 379–423, Jul. 1948

Perfect Channel State Information

- Discrete memoryless channels (DMCs)
- Let ${\cal X}$ and ${\cal Y}$ with $|{\cal X}|<\infty$ and $|{\cal Y}|<\infty$ be finite input and output alphabets
- Probability law for DMCs is specified by the channel

$$W^n(y^n|x^n) = \prod_{i=1}^n W(y_i|x_i)$$

Belong to the class of independent and identically distributed (i.i.d.) channels which represent the most tractable class of channel laws

The *capacity* C(W) of a discrete memoryless channel (DMC) W is

$$C(W) = \max_X I(X;Y) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p,W)$$

C. E. Shannon, "A mathematical theory of communication," *Bell Syst. Tech. J.*, vol. 27, no. 3, pp. 379–423, Jul. 1948

Capacity

The capacity C(W) of a discrete memoryless channel (DMC) W is

$$C(W) = \max_{X} I(X;Y) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p,W)$$

- Entropic quantities
- Single-letter
- Convex optimization problem
- Of particular relevance as it allows to compute the capacity C(W) as a function of the channel W given by a convex optimization problem

Can we compute the capacity algorithmically?

E. E. Shannon, "A mathematical theory of communication," *Bell Syst. Tech. J.*, vol. 27, no. 3, pp. 379–423, Jul.

Capacity

The capacity C(W) of a discrete memoryless channel (DMC) W is

$$C(W) = \max_X I(X;Y) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p,W)$$

- Entropic quantities
- Single-letter
- Convex optimization problem
- Of particular relevance as it allows to **compute** the capacity C(W) as a function of the channel W given by a convex optimization problem

Can we compute the capacity algorithmically?

C. E. Shannon, "A mathematical theory of communication," *Bell Syst. Tech. J.*, vol. 27, no. 3, pp. 379–423, Jul. 1948

- Alan M. Turing was the first to study this kind of problems systematically
- He developed a computing model **Turing machine**
- Object of interest: real numbers

- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proc. London Math. Soc.*, vol. 2, no. 42, pp. 230–265, 1936
 - —, "On computable numbers, with an application to the Entscheidungsproblem. A correction," *Proc. London Math. Soc.*, vol. 2, no. 43, pp. 544–546, 1937

Turing Machine: The Most Powerful Computation Model

Mathematical model of an abstract machine that manipulates symbols on a strip of tape according to certain given rules

A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proc. London Math. Soc.*, vol. 2, no. 42, pp. 230–265, 1936

—, "On computable numbers, with an application to the Entscheidungsproblem. A correction," *Proc. London Math. Soc.*, vol. 2, no. 43, pp. 544–546, 1937

Turing Machine (2)

Turing machines can simulate any given algorithm and therewith provide a simple but very powerful model of computation.

- No limitation on computational complexity
- Unlimited computing capacity and storage
- Completely error-free execution of programs
- Most powerful programming languages are Turing-complete (such as C, C++, Java, etc.)
- All discrete computing models are equivalent (von Neumann, Gödel, Minsky, ...)

Any arbitrarily large finite-dimensional problem can be exactly solved without errors by a Turing machine

Turing Machine (3)

Turing machines are suited to study the limitations in performance of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regardless of how powerful it may be

- Alan Turing introduced the concept of a computable real number in 1936, and demonstrated some principal limitations of computability
- In 1949 a computable monotonically increasing sequence which converges to a real non-computable number was constructed
- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proc. London Math. Soc.*, vol. 2, no. 42, pp. 230–265, 1936
- "On computable numbers, with an application to the Entscheidungsproblem. A correction," Proc. London Math. Soc., vol. 2, no. 43, pp. 544–546, 1937
- E. Specker, "Nicht konstruktiv beweisbare Sätze der Analysis," *Journal of Symbolic Logic*, vol. 14, no. 3, pp. 145–158, Sep. 1949

Computability of Numbers

Computable numbers are real numbers that are computable by Turing machines

Exact definition:

• A sequence $\{r_n\}_{n\in\mathbb{N}}$ is called a computable sequence if there exist recursive functions $a, b, s: \mathbb{N} \to \mathbb{N}$ with $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$r_n = (-1)^{s(n)} \frac{a(n)}{b(n)}$$

 A real number x is said to be computable if there exists a computable sequence of rational numbers {r_n}_{n∈ℕ} such that

$$|x - r_n| < 2^{-n}$$

Key idea: effective approximation

- \mathbb{R}_c computable real numbers
- Commonly used constants like e and π are computable

Computability of Numbers

Computable numbers are real numbers that are computable by Turing machines

Exact definition:

• A sequence $\{r_n\}_{n\in\mathbb{N}}$ is called a computable sequence if there exist recursive functions $a, b, s: \mathbb{N} \to \mathbb{N}$ with $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$r_n = (-1)^{s(n)} \frac{a(n)}{b(n)}$$

 A real number x is said to be computable if there exists a computable sequence of rational numbers {r_n}_{n∈ℕ} such that

$$|x - r_n| < 2^{-n}$$

Key idea: effective approximation

- \mathbb{R}_c computable real numbers
- Commonly used constants like e and π are computable

Computability of Distributions and Channels

- Based on this, we can define *computable probability distributions* and *computable channels*
- We define the set of computable probability distributions $\mathcal{P}_c(\mathcal{X})$ as the set of all probability distributions

$$p \in \mathcal{P}(\mathcal{X})$$
 such that $p(x) \in \mathbb{R}_c, x \in \mathcal{X}$

• Let $\mathcal{CH}_c(\mathcal{X}; \mathcal{Y})$ be the set of all computable channels, i.e., for a channel $W: \mathcal{X} \to \mathcal{P}(\mathcal{Y})$ we have $W(\cdot|x) \in \mathcal{P}_c(\mathcal{Y})$ for every $x \in \mathcal{X}$

Computability of C(W)

Warm-up: Let's see if for a computable channel W ∈ CH_c the capacity C(W) is computable...

Theorem.

Let $\mathcal X$ and $\mathcal Y$ be arbitrary finite alphabets. Then for all computable channels $W \in \mathcal{CH}_c$ we have

 $C(W) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p, W) \in \mathbb{R}_c.$

The capacity C(W) for a computable channel $W \in CH_c$ is computable and can be algorithmically computed by a Turing machine!

K. Weihrauch, Computable Analysis - An Introduction. Berlin, Heidelberg: Springer-Verlag, 2000

Computability of C(W)

Warm-up: Let's see if for a computable channel W ∈ CH_c the capacity C(W) is computable...

Theorem:

Let \mathcal{X} and \mathcal{Y} be arbitrary finite alphabets. Then for all computable channels $W \in \mathcal{CH}_c$ we have

$$C(W) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p, W) \in \mathbb{R}_c.$$

The capacity C(W) for a computable channel $W \in CH_c$ is computable and can be algorithmically computed by a Turing machine!

K. Weihrauch, Computable Analysis - An Introduction. Berlin, Heidelberg: Springer-Verlag, 2000

Block Fading Channel

- Let S be an arbitrary state (uncertainty) set
- State $s \in S$ is unknown, but remains *constant* and follows the statistic $p_S \in \mathcal{P}(S)$

The averaged channel (AC)

 $\mathcal{W}\coloneqqig\{\{W_s\in\mathcal{CH}(\mathcal{X};\mathcal{Y})\}_{s\in\mathcal{S}},p_S\in\mathcal{P}(\mathcal{S})ig\}$

is given by the collection of all channels $W_s \in C\mathcal{H}(\mathcal{X}; \mathcal{Y})$ for all states $s \in S$ and additional probability distribution $p_S \in \mathcal{P}(S)$ on the state set S.

Averaged Channel

The *capacity* $C(\mathcal{W})$ of an averaged channel \mathcal{W} is

$$C(\mathcal{W}) = \sup_{p \in \mathcal{P}(\mathcal{X})} \inf_{s \in \mathcal{S}} I(p, W_s)$$

- Analytically well understood (closed-form single letter entropic expression)
- Surprisingly, not much known about its algorithmic computability and the optimal signal processing
- Study its structure and algorithmic computability of optimal strategies

R. Ahlswede, "The weak capacity of averaged channels," Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 11, pp. 61–73, Mar. 1968

Computability of $C(\mathcal{W})$

An AC $\mathcal{W} = \{\{W_s \in \mathcal{CH}_c(\mathcal{X}; \mathcal{Y})\}_{s \in \mathcal{S}}, p_S \in \mathcal{P}(\mathcal{S})\}\$ is said to be *computable* if there is a recursive function $\varphi : \mathcal{S} \to \mathcal{CH}_c(\mathcal{X}; \mathcal{Y})\$ with $\varphi(s) = W_s$ for all $s \in \mathcal{S}$ and p_S is a computable probability distribution. The set of all computable ACs is denoted by $\mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y})$.

The set W is algorithmically constructible, i.e., for every state $s \in S$ the channel W_s can be constructed by an algorithm with input s

Theorem.

Let \mathcal{X} and \mathcal{Y} be arbitrary finite alphabets. Then there is a computable averaged channel $\mathcal{W} \in \mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y})$ such that

 $C(\mathcal{W}) = \sup_{p \in \mathcal{P}(\mathcal{X})} \inf_{s \in \mathcal{S}} I(p, W_s)
otin \mathbb{R}_c.$

Although the channel itself is computable, i.e., W ∈ AC_c(X, S; Y), it is not possible to algorithmically compute C(W)!

Computability of $C(\mathcal{W})$

An AC $\mathcal{W} = \{\{W_s \in \mathcal{CH}_c(\mathcal{X}; \mathcal{Y})\}_{s \in \mathcal{S}}, p_S \in \mathcal{P}(\mathcal{S})\}\$ is said to be *computable* if there is a recursive function $\varphi : \mathcal{S} \to \mathcal{CH}_c(\mathcal{X}; \mathcal{Y})\$ with $\varphi(s) = W_s$ for all $s \in \mathcal{S}$ and p_S is a computable probability distribution. The set of all computable ACs is denoted by $\mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y})$.

The set W is algorithmically constructible, i.e., for every state $s \in S$ the channel W_s can be constructed by an algorithm with input s

Theorem:

Let \mathcal{X} and \mathcal{Y} be arbitrary finite alphabets. Then there is a computable averaged channel $\mathcal{W} \in \mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y})$ such that

$$C(\mathcal{W}) = \sup_{p \in \mathcal{P}(\mathcal{X})} \inf_{s \in \mathcal{S}} I(p, W_s) \notin \mathbb{R}_c.$$

Although the channel itself is computable, i.e., $W \in \mathcal{AC}_c(\mathcal{X}, \mathcal{S}; \mathcal{Y})$, it is not possible to algorithmically compute C(W)!

Discussion

- Computability framework based on Turing machines
- Computability of capacities
 - \square Capacity value of DMCs is computable: $C(W) \in \mathbb{R}_c$
 - Capacity value of ACs is in general **not** computable: $C(\mathcal{W}) \notin \mathbb{R}_c$
- Search for capacity-achieving transmission schemes
 - Goal: Turing machine $\mathfrak{T}(n) = (E_n^*, \phi_n^*)$ that outputs an optimal encoder E_n^* and optimal decoder ϕ_n^* providing the maximal possible rate while guaranteeing error probability ϵ
 - **Not** possible in general for ACs!

(Note that it is not required that the Turing machine depends recursively on the channel; it is only asked if it is possible to find such a search algorithm for a fixed and given channel and error)

Further studies on the algorithmic constructability of codes:

H. Boche, R. F. Schaefer, and H. V. Poor, "Turing meets Shannon: Algorithmic constructability of capacity-achieving codes," in *Proc. IEEE Int. Conf. Commun.*, Montreal, QC, Canada, Jun. 2021

Thank you for your attention!

Supported in part by

SPONSORED BY THE

Post Shannon Communication (NewCom) - 16KIS1003K and 16KIS1004

Gottfried Wilhelm Leibniz Programme – BO 1734/20-1 Excellence Strategy – EXC-2092 – 390781972 and EXC-2111 – 390814868 SCHA 1944/6-1

CCF-0939370 and CCF-1908308

References

- C. E. Shannon, "A mathematical theory of communication," *Bell Syst. Tech. J.*, vol. 27, no. 3, pp. 379–423, Jul. 1948.
- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proc. London Math. Soc.*, vol. 2, no. 42, pp. 230–265, 1936.
- . "On computable numbers, with an application to the Entscheidungsproblem. A correction," Proc. London Math. Soc., vol. 2, no. 43, pp. 544–546, 1937.
- E. Specker, "Nicht konstruktiv beweisbare Sätze der Analysis," *Journal of Symbolic Logic*, vol. 14, no. 3, pp. 145–158, Sep. 1949.
- 🥫 K. Weihrauch, *Computable Analysis An Introduction*. Berlin, Heidelberg: Springer-Verlag, 2000.
- R. Ahlswede, "The weak capacity of averaged channels," Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 11, pp. 61–73, Mar. 1968.
- H. Boche, R. F. Schaefer, and H. V. Poor, "Turing meets Shannon: Algorithmic constructability of capacity-achieving codes," in *Proc. IEEE Int. Conf. Commun.*, Montreal, QC, Canada, Jun. 2021.