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Introduction
In noisy conditions, large-vocabulary end-to-end speech recogni-
tion remains difficult. In this paper, we address the question of
how to optimally inform the end-to-end transformer/CTC model of
any time-variant reliability of the acoustic and visual information
streams. Our proposed decision fusion net (DFN) yields signifi-
cant improvements compared to a state-of-the-art baseline model.

System Overview
Model structure: sequence-to-sequence transformer model with con-
nectionist temporal classification—TM-CTC
Training:

L = α · log pctc(s|o) + (1− α) · log ps2s(s|o)
Decoding:
log p∗(s|o) = α · log pctc(s|o) + (1−α) · log ps2s(s|o) + θ · log pLM(s)
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Figure 1: Audio encoder (left), video encoder (middle) and reliability measures
encoder (right) for both modalities i ∈ a, v. ha, hv and ξi are in the same length
NF/4, where NF is the number of frames

Reliability Measures:
• acoustic (Ra): MFCCs, SNR, f0, ∆f0, Probability of voicing
• visual (Rv): Confidence from OpenFace [1] and Action Units (AU12,

AU15, AU17, AU23, AU25, AU26)

•Re-alignment in decoder
ps2s(s|oi)
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Figure 2: Transformer decoder (left) and CTC decoder (right) for both
modalities i ∈ a, v

•Multi-head attention:

Tj = softmax
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•Problem: Reliability measures ξi have length NF/4, the token-by-
token log-posteriors ps2s(s|oi) have length NT

•Solution: re-use the attention transform matrix of each head
ξ̃ij = Ti

j ·
(
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•Proposed fusion architecture
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Figure 3: Topology of the Decision Fusion Networks (DFN)

Training Setup
ESPnet [2] is the ASR toolkit. All models are pretrained on LRS2 and
LRS3 pre-train data [3, 4], then fine-tuned with the LRS2 training set.
Acoustic model uses 80 log Mel features together with f0, ∆f0, and
the probability of voicing. Training set augmented with ambient noise,
SNRs from −9 dB to 9 dB. Visual model uses 96 × 96 pixel grayscale
mouth region of interest (ROI) at 25 fps fed into a pre-trained 3D/2D
ResNet [5].

Results and Conclusion
The proposed DFN fusion shows best performance in all condi-
tions. On average, the new system achieves a relative word
error rate reduction of 43% compared to the audio-only setup
and 31% compared to the audio-visual end-to-end baseline [3].

models
dB -12 -9 -6 -3 0 3 6 9 12 clean avg.

AO(m) 18.9 13.7 11.2 8.4 6.3 6.8 4.5 4.1 4.3 4.2 8.24
AO(a) 25.7 23.4 18.5 11.6 8.2 9.0 5.9 3.8 4.4 4.2 11.47
VO(vc) 58.7 61.0 61.7 69.6 69.6 63.5 64.6 63.6 66.6 61.9 64.08
VO(gb) 66.6 69.2 71.0 68.5 68.5 71.1 62.7 69.4 67.6 66.9 68.15
VO(sp) 68.5 72.5 73.7 70.1 70.1 70.6 68.3 69.1 73.1 67.9 70.39

AV(m.vc) 14.6 11.8 6.4 7.9 7.9 6.3 5.2 4.4 3.4 4.0 7.19
DFN(m.vc) 11.1 8.7 5.5 4.8 4.8 4.5 3.6 3.3 2.2 2.4 5.09
AV(a.vc) 19.1 19.0 14.3 7.3 6.3 6.0 5.7 4.5 4.9 4.0 9.11

DFN(a.vc) 14.3 11.9 8.1 4.8 4.0 5.4 3.7 2.8 3.6 2.4 6.10
AV(a.gb) 20.6 18.9 15.0 7.7 6.8 7.5 5.9 3.9 4.8 4.0 9.51

DFN(a.gb) 14.9 12.8 9.4 5.2 4.2 5.5 3.8 3.0 4.1 2.6 6.55
AV(a.sp) 19.5 19.9 15.3 7.7 7.2 6.3 5.6 4.4 4.6 4.3 9.48

DFN(a.sp) 15.4 12.8 9.9 5.2 4.7 5.5 3.4 2.6 4.0 2.5 6.60

Figure 4: Performance of audio-visual and uni-modal speech recognition (WER
[%]). AO: audio only. VO: video only. AV: AV baseline [3]. DFN: proposed
DFN fusion. m: music noise. a: ambient noise. vc: clean visual data. gb:
visual Gaussian blur. sp: visual salt-and-pepper noise.
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