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Contribution: Establish more accurate conditions
Diversity smoothing has been widely developed for angle estimation with bistatic multiple input multiple
output (MIMO) radar in the presence of coherent targets, the parameter identifiability of which is an impor-
tant issue. In this paper, we are devoted to establishing more accurate conditions by studying the positive
definiteness of smoothed target covariance matrix. The antenna numbers of transmit and receive arrays
are derived as functions of the target number and target structure. We show that the new results improve
upon previous ones and recover them in special cases. Simulation results are presented that corroborate our
theoretical findings.

Abstract
Multiple input multiple output (MIMO) radar has
been widely used for angle estimation due to the
increased degrees of freedom (DOFs) and enhanced
spatial resolution compared with the phased-array
radar.
Different techniques have been proposed for target
localization in the colocated MIMO radar, using the
subspace-based methods such as multiple signal clas-
sification (MUSIC) and estimation of signal param-
eters via rotational invariance technique (ESPRIT).
In the presence of coherent or correlated targets,
however, the target covariance matrix is singular and
these methods fail to resolve these targets. As a s-
tandard pre-processing technique, spatial smoothing
(SS) has been widely used to overcome the coheren-
cy in the target covariance matrix at a cost of a small
effective array size. This technique has been applied
for angle estimation with MIMO radar known as di-
versity smoothing (DS).
The parameter identifiability of DS-based MIMO
radar have been derived for coherent targets, where
the sufficient conditions for bistatic MIMO radar
were presented. However, the target is single-
structured and the forward backward case has not
been addressed.

Positive Definiteness and Parameter Identifiability
Lemma 1: The smoothed array covariance matrices Σf and Σfb are derived as in (4) and (5). rank (A)
denotes the rank of A. Then,

1. Σf is positive definite, if rank (Ap
2) = K̃p;

2. Σfb is positive definite, if rank
(
Ãp

2

)
= K̃p, where Ãp

2 =
[
(Ap

2)
T
, (Ap

2Φp)
T
]T

.

Remark 1: The study for the positive definiteness of the forward smoothed matrix Σf can be interpreted
as a significant extension of the methods in [1-2] for the coherent and correlated targets. In particular, the
proof of the forward backward smoothed covariance matrix Σfb using the linear independent concept and,
more importantly, it is different from the quadratic product method. Besides, compared with the discussions
in [2] which just consider the case of K1 = K, the proposed results are generalized and easily analyzed.
FOSS: Since D (Ap

2) = D (A2), we have D (A1) ≥ K + 1, D (A2) ≥ maxpK̃p.

Assuming M1 ≥ N1 for brevity, the conditions can be revised as M1 (N1 − 1) ≥ K,M2N2 ≥ maxpK̃p, which
satisfy

fb ,M1N1 +M2N2 −M1

= MN − (M1 − 1)N2 − (M2 − 1) (N1 − 1)

≥ K + maxpK̃p. (1)

FBSS: Similarly, from Lemma 1(b), the conditions are rewritten as D (A1) ≥ K + 1, D
(
Ã2

)
≥ maxpK̃p.

We assume M1 > M2 or N1 > N2 as a prior, and we have D
(
Ã2

)
= 2D (A2) = 2M2N2. We get

M1 (N1 − 1) ≥ K, 2M2N2 ≥ maxpK̃p, which yield fb ≥ K +
maxpK̃p

2 .
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Simulation Results
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 Fig.8 plots the maximum number of detectable targets for FODS and FBDS, where SNR is 60dB and the
number of snapshots is set as 500. As shown, FODS identifies at most fb−r = 4 targets with M1 = 3, N1 = 2,
and FBDS resolves up to fb − r/2 = 6 targets with M1 = N1 = 3. As a result, FBDS detects more targets
than FODS for the bistatic MIMO radar.
Moreover, according to the previous result, FODS can identify 3 targets with M1 = N1 = 2, while Fig.8 has
shown that 4 targets can be detected. It is obviously seen that the proposed result is more accurate than
that of [2].

Diversity Smoothing
The received signal at the l-th snapshot can be writ-
ten as

r (l) = [at (φ1) ⊗ ar (θ1) , · · · ,at (φK) ⊗ ar (θK)]Cs (l)

+ n (l)

= (At ◦Ar)Cs (l) + n (l) , (2)

Thus, assuming the noise and targets uncorrelated
with each other, we calculate the array covariance
matrix as

R = E
[
r(l)rH(l)

]
= (At ◦Ar)CRsC

H(At ◦Ar)
H

+ σ2
nIMN

= ARssA
H + σ2

nIMN . (3)

Diversity smoothing has been an effective method to
decorrelate the coherent signals. Then, the (m2, n2)-
th sliding window (covariance submatrix) is given by

Rm2n2 =A1Φ
m2−1
t Φn2−1

r RsΦ
1−m2
t Φ1−n2

r AH
1

+ σ2
nIM1N1

, (4)

Taking the average of Rm2n2
over all (m2, n2), the

forward only DS (FOSS) matrix is expressed by

Rf =
1

M2N2

M2∑
m2=1

N2∑
n2=1

Rm2n2

=
1

M2N2
A1ΣfA

H
1 + σ2

nIM1N1 , (5)

Likewise, the forward backward DS (FBDS) matrix
is given by

Rfb =
1

2

(
Rf + JM1N1

R∗
fJM1N1

)
=

1

2
A1ΣfbA

H
1 + σ2

nIM1N1
, (6)


