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The goal of the current study is to estimate reverberation time, T60, by using a deep-
learning approach with appropriate loss terms. Previous studies traditionally use signal
processing techniques or explore different input features for deep-learning based
methods. We propose a composite classification- and regression-based cost function for
training a deep neural network that predicts T60 for a variety of seen and unseen
reverberant conditions. In particular, we explore a multi-task framework that uses
magnitude and phase features of the signals, incorporates an additional convolutional-
based feature extraction stage, and generates predictions using regression, classification,
and classification-based regression training targets.

Introduction Approach

• Our approach incorporates composite classification and 
regression-based cost function for training a deep neural 
network that predicts T60

• Our approach is different from recent methods and benefits 
from the two tasks

• Our approach benefits from dividing the classification tasks into 
two subtasks

• The results show that the tradeoff between weighting 
classification versus regression tasks does influence results

Conclusions

Motivation
• Reverberation time, T60 influences the amount of reverberation in a signal
• T60 tells how long it takes a given signal to decay by 60 dB, higher T60 times indicate 

more reverberation
• It contains meaningful information about the room environment, and it also discloses 

information about the corresponding room impulse response
• By estimating T60 help with auditory scene analysis and dereverberation

Previous Studies
• Different Features

• Mel-frequency cepstral coefficient(MFCC) [Gomez et al., 2010]
• Gabor feature vector [Bryan 2020]
• Short-term root-mean square(RMS) [Cox et al., 2001]

• Different model structures
• Hidden Markov model(HMM)  [Hirsch et al., 2008]
• Multi-layer perceptron(MLP) [Xiong et al., 2013]
• Convolutional Neural Network(CNN) [Gamper et al., 2018]

• Different loss function
• Mean-square error (MSE) [Xiong et al., 2013] [Xiong et al., 2015] [Gamper et al., 2018] 

[Bryan 2020]

Proposed Cost Functions

• Combination of cross-entropy loss 𝐿𝑐𝑒𝑙 and mean-squared error (MSE) 𝐿𝑟𝑒𝑔:

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 = 𝛽 ∗ 𝐿𝑐𝑒𝑙 + 1 − 𝛽 ∗ 𝐿𝑟𝑒𝑔, 𝛽 ∈ [0, 1]

• Incorporated classification-based regression loss 𝐿𝑐𝑟𝑒𝑔:

𝐿𝑡𝑜𝑡𝑎𝑙
𝐵 = 𝛽 ∗ 𝛼 ∗ 𝐿𝑐𝑒𝑙 + 1 − 𝛼 ∗ 𝐿𝑐𝑟𝑒𝑔 + 1 − 𝛽 ∗ 𝐿𝑟𝑒𝑔

• Incorporated evaluation scores Pearson’s correlation coefficient (PCC) 𝜌 and 
Spearman’s rank correlation coefficient (SRCC) 𝜂:

𝐿𝑡𝑜𝑡𝑎𝑙
𝐶 = 𝐿𝑡𝑜𝑡𝑎𝑙

𝐵 − 𝜌𝑟𝑒𝑔 − 𝜂𝑟𝑒𝑔 − 𝜌𝑐𝑙𝑠 − |𝜂𝑐𝑙𝑠|

• Mean absolute error (MAE) from regression task incorporated:

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 = 𝛽 ∗ 𝛼 ∗ 𝐿𝑐𝑒𝑙 + 1 − 𝛼 ∗ 𝐿𝑐𝑟𝑒𝑔 +𝑀𝑐𝑟𝑒𝑔 + 1 − 𝛽 ∗ 𝐿𝑟𝑒𝑔 +𝑀𝑟𝑒𝑔 − 𝜌𝑟𝑒𝑔 − 𝜂𝑟𝑒𝑔 − 𝜌𝑐𝑙𝑠 − |𝜂𝑐𝑙𝑠|

MSE MAE 𝝆 𝜼

Reg Cls Reg Cls Reg Cls Reg Cls

MLP [6] 0.075 - 0.211 - 0.783 - 0.788 -

CNN [4] 0.044 - 0.196 - 0.931 - 0.940 -

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 (β = 0) 0.057 0.145 0.208 0.329 0.929 -0.128 0.939 -0.107

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 (β = 0.4) 0.270 0.033 0.425 0.147 -0.211 0.927 -0.165 0.940

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 (β = 1) 0.448 0.198 0.566 0.365 0.092 0.120 0.101 -0.013

𝐿𝑡𝑜𝑡𝑎𝑙
𝐵 (β = 0.3, α = 0.1) 0.176 0.135 0.347 0.318 0.781 0.573 0.819 0.635

𝐿𝑡𝑜𝑡𝑎𝑙
𝐶 (β = 0.4, α = 0.2) 0.131 0.022 0.289 0.116 0.609 0.955 0.606 0.973

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 (β = 0.3, α = 0) 0.098 0.093 0.270 0.228 0.771 0.808 0.800 0.816

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 (β = 0.9, α = 0.1) 0.120 0.057 0.290 0.204 0.955 0.963 0.958 0.968

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 (β = 0.3, α = 1) 0.284 0.250 0.435 0.412 -0.013 0.428 0.003 0.430

MSE MAE 𝝆 𝜼

Reg Cls Reg Cls Reg Cls Reg Cls

MLP [6] 0.092 - 0.239 - 0.715 - 0.723 -

CNN [4] 0.096 - 0.212 - 0.856 - 0.860 -

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 (β = 0) 0.047 0.145 0.189 0.329 0.942 -0.098 0.953 -0.084

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 (β = 0.4) 0.298 0.056 0.449 0.171 -0.042 0.919 -0.198 0.942

𝐿𝑡𝑜𝑡𝑎𝑙
𝐴 (β = 1) 0.457 0.201 0.577 0.368 0.040 0.069 0.050 -0.070

𝐿𝑡𝑜𝑡𝑎𝑙
𝐵 (β = 0.3, α = 0.1) 0.174 0.136 0.345 0.319 0.830 0.476 0.872 0.546

𝐿𝑡𝑜𝑡𝑎𝑙
𝐶 (β = 0.4, α = 0.2) 0.117 0.023 0.273 0.114 0.532 0.968 0.525 0.984

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 (β = 0.3, α = 0) 0.092 0.089 0.261 0.221 0.845 0.814 0.866 0.837

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 (β = 0.9, α = 0.1) 0.102 0.045 0.263 0.180 0.962 0.973 0.962 0.977

𝐿𝑡𝑜𝑡𝑎𝑙
𝐷 (β = 0.3, α = 1) 0.295 0.242 0.444 0.405 0.219 0.601 0.229 0.622

Table 2. Unseen Rooms Comparison with different approaches

Results

Spectrogram of Clean Speech Spectrogram of Reverberant Speech (T60=0.3) Spectrogram of Reverberant Speech
(T60=0.9)

Spectrogram of Reverberant Speech 
(T60=1.5)

• Pure Regression task: directly T60 estimation

• Classification task, decomposed into two sub-tasks:
• Classification: probabilities of each T60

• Classification-based regression:

𝐶𝑅𝑒𝑔𝑇60 = ෍

𝑖=1

𝐻

𝐶𝑜𝑢𝑡
𝑖 × 𝑇𝑖 , 𝑖 = 1,⋯ ,𝐻

Composite T60 Estimation

• Dataset: TIMIT corpus [Garofolo et.al., 1993]
• Randomly select 5,000, 500, and 500 sentences to construct training, 

validation and testing datasets
• All 6,000 utterances downsampled to 8kHz
• Simulate RIRs from 11 different rooms via image method [Habets 2010]. 
• Select 13 different reverberation times from 0.3s to 1.5s with steps of 

0.1s
• 65,000 reverberant utterances for training set, 6,500 reverberant 

utterances for validation set, and another 6500 reverberant utterances for 
testing set

Speech Materials

Table 1. Seen Rooms Comparison with different approaches


