Introduction

The goal of the current study is to estimate reverberation time, T_{60} , by using a deeplearning approach with appropriate loss terms. Previous studies traditionally use signal processing techniques or explore different input features for deep-learning based methods. We propose a composite classification- and regression-based cost function for training a deep neural network that predicts T_{60} for a variety of seen and unseen reverberant conditions. In particular, we explore a multi-task framework that uses magnitude and phase features of the signals, incorporates an additional convolutionalbased feature extraction stage, and generates predictions using regression, classification, and classification-based regression training targets.

Motivation

- Reverberation time, T_{60} influences the amount of reverberation in a signal
- T₆₀ tells how long it takes a given signal to decay by 60 dB, higher T₆₀ times indicate more reverberation
- It contains meaningful information about the room environment, and it also discloses information about the corresponding room impulse response
- By estimating T_{60} help with auditory scene analysis and dereverberation

Previous Studies

• Different Features

- Mel-frequency cepstral coefficient(MFCC) [Gomez et al., 2010]
- Gabor feature vector [Bryan 2020]
- Short-term root-mean square(RMS) [Cox et al., 2001]
- Different model structures
 - Hidden Markov model(HMM) [Hirsch et al., 2008]
 - Multi-layer perceptron(MLP) [Xiong et al., 2013]
 - Convolutional Neural Network(CNN) [Gamper et al., 2018]
- Different loss function
 - Mean-square error (MSE) [Xiong et al., 2013] [Xiong et al., 2015] [Gamper et al., 2018] [Bryan 2020]

ON LOSS FUNCTIONS FOR DEEP-LEARNING BASED T60 ESTIMATION

Yuying Li¹; Yuchen Liu²; Donald S. Williamson² ¹Department of Intelligent Systems Engineering, Indiana University; ²Department of Computer Science, Indiana University {liyuy, liu477, williads}@indiana.edu

Composite T60 Estimation

- Pure Regression task: directly T₆₀ estimation
- Classification task, decomposed into two sub-tasks:
 - Classification: probabilities of each T_{60}
 - Classification-based regression:

$$CReg_{T_{60}} = \sum_{i=1}^{H} (C_{out}^{i} \times T_{i}), i = 1, \cdots, H$$

Proposed Cost Functions

• Combination of cross-entropy loss L_{cel} and mean-squared error (MSE) L_{reg} :

$$L_{total}^{A} = \beta * L_{cel} + (1 - \beta) * L_{reg,} \beta \in [0, 1]$$

• Incorporated classification-based regression loss L_{creg} :

$$L_{total}^{B} = \beta * \left(\alpha * L_{cel} + (1 - \alpha) * L_{creg}\right) + (1 - \beta) * L_{reg}$$

• Incorporated evaluation scores Pearson's correlation coefficient (PCC) ρ and Spearman's rank correlation coefficient (SRCC) η :

$$L_{total}^{C} = L_{total}^{B} - \left|\rho_{reg}\right| - \left|\eta_{reg}\right| - \left|\rho_{cls}\right| - \left|\eta_{cls}\right|$$

• Mean absolute error (MAE) from regression task incorporated:

$$L_{total}^{D} = \beta * \left(\alpha * L_{cel} + (1 - \alpha) * \left(L_{creg} + M_{creg} \right) \right) + (1 - \beta) * \left(L_{reg} + M_{reg} \right) - \left| \rho_{reg} \right| - \left| \eta_{reg} \right| - \left| \rho_{cls} \right| - \left| \eta_{cls} \right|$$

validation and testing datasets 0.1s testing set **Table** MLP [6] CNN [4] $L_{total}^{A}(\beta = 0)$ $L_{total}^{A}(\beta = 0.4)$ $L_{total}^{A}(\beta = 1)$ $L^B_{total}(\beta = 0.3, \alpha = 0.1)$ $L_{total}^{C}(\beta = 0.4, \alpha = 0.2)$ $L_{total}^{D}(\beta = 0.3, \alpha = 0)$ $L_{total}^{D}(\beta = 0.9, \alpha = 0.1)$ $L_{total}^{D}(\beta = 0.3, \alpha = 1)$ Table 2 MLP [6] CNN [4] $L_{total}^{A}(\beta = 0)$ $L_{total}^A(\beta = 0.4)$ $L_{total}^{A}(\beta = 1)$ $L_{total}^{B}(\beta = 0.3, \alpha = 0.1)$ $L_{total}^{C}(\beta = 0.4, \alpha = 0.2)$ $L_{total}^{D}(\beta = 0.3, \alpha = 0)$ $L_{total}^{D}(\beta = 0.9, \alpha = 0.1)$ $L_{total}^{D}(\beta = 0.3, \alpha = 1)$ network that predicts T_{60} from the two tasks two subtasks

Speech Materials

Dataset: TIMIT corpus [Garofolo et.al., 1993]

Randomly select 5,000, 500, and 500 sentences to construct training,

All 6,000 utterances downsampled to 8kHz

Simulate RIRs from 11 different rooms via image method [Habets 2010].

Select 13 different reverberation times from 0.3s to 1.5s with steps of

65,000 reverberant utterances for training set, 6,500 reverberant utterances for validation set, and another 6500 reverberant utterances for

Results L. Seen Rooms Comparison with different approaches								
	Reg	Cls	Reg	Cls	Reg	Cls	Reg	Cls
	0.075	-	0.211	-	0.783	-	0.788	-
	0.044	_	0.196	-	0.931	-	0.940	-
	0.057	0.145	0.208	0.329	0.929	-0.128	0.939	-0.107
	0.270	0.033	0.425	0.147	-0.211	0.927	-0.165	0.940
	0.448	0.198	0.566	0.365	0.092	0.120	0.101	-0.013
)[0.176	0.135	0.347	0.318	0.781	0.573	0.819	0.635
)	0.131	0.022	0.289	0.116	0.609	0.955	0.606	0.973
	0.098	0.093	0.270	0.228	0.771	0.808	0.800	0.816
)	0.120	0.057	0.290	0.204	0.955	0.963	0.958	0.968
	0.284	0.250	0.435	0.412	-0.013	0.428	0.003	0.430
2.	Unseen	Rooms	Compar	ison wi	th differ	ent app	roaches	5
	MSE		MAE		ρ		η	
	Reg	Cls	Reg	Cls	Reg	Cls	Reg	Cls
	0.092	-	0.239	-	0.715	-	0.723	-
	0.096	-	0.212	-	0.856	-	0.860	-
	0.047	0.145	0.189	0.329	0.942	-0.098	0.953	-0.084
	0.298	0.056	0.449	0.171	-0.042	0.919	-0.198	0.942
	0.457	0.201	0.577	0.368	0.040	0.069	0.050	-0.070
.)	0.174	0.136	0.345	0.319	0.830	0.476	0.872	0.546
2)	0.117	0.023	0.273	0.114	0.532	0.968	0.525	0.984
)	0.092	0.089	0.261	0.221	0.845	0.814	0.866	0.837
.)	0.102	0.045	0.263	0.180	0.962	0.973	0.962	0.977
)	0.295	0.242	0.444	0.405	0.219	0.601	0.229	0.622

Conclusions

• Our approach incorporates composite classification and regression-based cost function for training a deep neural

• Our approach is different from recent methods and benefits

• Our approach benefits from dividing the classification tasks into

• The results show that the tradeoff between weighting classification versus regression tasks does influence results