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Motivation

• Cocktail party problem: separating and 
recognizing all speakers in the audio stream

• Current approach: ASR system is trained to 
recognize single-speaker device-directed 
speech and ignore all interference

• Ideal conversational ASR: wakeword-free 
multi-party interactions
• Overlapping speech processing capability
• Low-latency restriction for streaming
• Only one channel can be available



• With source separation objective [1-4]
• Deep clustering [5]
• TaSNet [6]

SOT-AED [12]

Prior work on single-channel multi-speaker ASR

• With single ASR objective
• Permutation Invariant Training (PIT) [7-11]
• Serialized Output Training (SOT) [12, 13]

PIT-AED [11]
Multi-talker RNN-T [18]



• First attempt to build a streaming multi-speaker 
ASR system

• Based on Recurrent neural network transducer 
(RNN-T) [14]

• A study of two different training approaches
• Deterministic assignment training (DAT)
• Permutation Invariant Training (PIT)

• On-par results with a non-streaming SOT model  
on partially overlapping speech of 2 speakers

Single-speaker RNN-T

Main contributions



DAT-MS-RNN-T PIT-MS-RNN-T

Multi-speaker RNN-T (MS-RNNT)

DAT: Deterministic assignment training PIT: Permutation invariant training
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• LibriSpeechMix [15]: mixed 2-speaker utterances from LibriSpeech [16]

• Simulation constraints
• Min. 0.5 sec delay between the speech start of 2 speakers (for train partition only)
• Each mixture has an overlapping segment
• Utterances are mixed at 0 dB

• Overall overlap ratios
• Train: 28%
• Dev: 25%
• Test: 24%

Dataset



• Model architecture
• LSTM encoder with 1024 units, 2 layer per each encoder component
• LSTM decoder: 2 layers, 1024 units
• Feed-forward joint network with 1 layer
• Output vocabulary: 2500 WPs

• Input features
• 64-dim log-mel filterbanks
• Frame stacking with a factor of 3
• Adaptive SpecAugment policy [17]

• Tricks of the trade
• Pre-training on single-speaker LibriSpeech
• Multi-style training
• Speaker order labels [18] as input to SD encoders in DAT-MS-RNN-T

Setup



• Optimal edit distance Word Error Rate (WER)
• Set of permutations (for 2 speakers): 
• Ground truth 
• Model output  

Evaluation



Results



• Vanilla DAT achieves 82% WERR on test-2spk w.r.t single-speaker RNN-T
• WER increase from 6.5% to 9.2% on test-clean due to hypothesis splitting
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• Vanilla DAT achieves 82% WERR on test-2spk w.r.t single-speaker RNN-T
• WER increase from 6.5% to 9.2% on test-clean due to hypothesis splitting

• Speaker order labels help to follow the same speaker
• Multi-style training improves generalization
• Overall performance of PIT-MS-RNN-T is 4% relatively better than DAT-MS-RNN-T

Results



• On-par performance on test-2spk with SOT-AED model w/o speaker inventory
• Fewer parameters
• Streaming-capable with algorithmic latency of 30ms (feature frame rate)

Results



• Proposed a novel multi-speaker RNN-T model architecture which can be 
directly applied in streaming applications
• On-par algorithmic latency with single-speaker RNN-T

• Benchmarked on artificially mixed partially overlapping speech task
• On par result with non-streaming SOT model

• Investigated single-speaker performance of a multi-speaker model

• Future work
• Improve robustness to errors on single-speaker data
• Test on real data (LibriCSS, AMI, CHiME-6, etc.)
• Generalize to ambiguous number of speakers during inference (1 to N)

Conclusions and outlook
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