

STREAMING MULTI-SPEAKER ASR WITH RNN-T

Ilya Sklyar Anna Piunova Yulan Liu

06.2021

{ilsklyar, piunova, lyulan}@amazon.com

IEEE ICASSP 2021

Motivation

- **Cocktail party problem**: separating and recognizing all speakers in the audio stream
- Current approach: ASR system is trained to recognize single-speaker device-directed speech and ignore all interference
- Ideal conversational ASR: wakeword-free multi-party interactions
 - Overlapping speech processing capability
 - Low-latency restriction for streaming
 - Only one channel can be available

🔘 amazon alexa

Prior work on single-channel multi-speaker ASR

- With source separation objective [1-4]
 - Deep clustering [5] \bullet

PIT-AED [11]

TaSNet [6] \bullet

- With single ASR objective
- Permutation Invariant Training (PIT) [7-11]
- Serialized Output Training (SOT) [12, 13]

SOT-AED [12]

Multi-talker RNN-T [18] amazon alexa

Main contributions

- First attempt to build a *streaming* multi-speaker ulletASR system
- Based on Recurrent neural network transducer \bullet (RNN-T) [14]
- A study of two different training approaches \bullet
 - Deterministic assignment training (DAT) ightarrow
 - Permutation Invariant Training (PIT) ightarrow
- On-par results with a non-streaming SOT model ulleton partially overlapping speech of 2 speakers

Single-speaker RNN-T

DAT-MS-RNN-T

PIT-MS-RNN-T

DAT: Deterministic assignment training

PIT: Permutation invariant training

^{training} 🔿 amazon alexa

DAT-MS-RNN-T

PIT-MS-RNN-T

 $\mathbf{h}^{MixEnc} = \operatorname{MixEnc}(\mathbf{x})$

DAT: Deterministic assignment training

PIT: Permutation invariant training

DAT-MS-RNN-T

PIT-MS-RNN-T

 $\mathbf{h}^{MixEnc} = \text{MixEnc}(\mathbf{x})$ $\mathbf{h}^{SDEnc}_{s} = \text{SDEnc}_{s}(\mathbf{h}^{MixEnc})$

DAT: Deterministic assignment training

PIT: Permutation invariant training

DAT-MS-RNN-T

 $\mathbf{h}_s = \operatorname{RecEnc}(\mathbf{h}_s^{SDEnc})$

Speaker-discriminative encoder

Speaker-discriminative encoder

PIT: Permutation invariant training

PIT-MS-RNN-T

^{training} 🔿 amazon alexa

DAT-MS-RNN-T

DAT: Deterministic assignment training

PIT: Permutation invariant training amazon alexa

PIT-MS-RNN-T

y2_1,...,y2_W

Prediction network

DAT-MS-RNN-T

DAT: Deterministic assignment training

PIT: Permutation invariant training amazon alexa

y2_1,...,y2_W

PIT-MS-RNN-T

DAT-MS-RNN-T

PIT-MS-RNN-T

DAT: Deterministic assignment training

PIT: Permutation invariant training

^{training} 🔿 amazon alexa

Dataset

- LibriSpeechMix [15]: mixed 2-speaker utterances from LibriSpeech [16] ullet
- Simulation constraints ightarrow
 - Min. 0.5 sec delay between the speech start of 2 speakers (for train partition only) ullet
 - Each mixture has an overlapping segment \bullet
 - Utterances are mixed at 0 dB \bullet
- Overall overlap ratios ullet
 - Train: 28%
 - Dev: 25%
 - Test: 24%

Setup

- Model architecture
 - LSTM encoder with 1024 units, 2 layer per each encoder component
 - LSTM decoder: 2 layers, 1024 units •
 - Feed-forward joint network with 1 layer •
 - Output vocabulary: 2500 WPs \bullet
- Input features
 - 64-dim log-mel filterbanks
 - Frame stacking with a factor of 3
 - Adaptive SpecAugment policy [17] \bullet
- Tricks of the trade
 - Pre-training on single-speaker LibriSpeech
 - Multi-style training \bullet
 - Speaker order labels [18] as input to SD encoders in DAT-MS-RNN-T

Evaluation

- Optimal edit distance Word Error Rate (WER)
 - Set of permutations (for 2 speakers): $\mathcal{P} = \{(1,2), (2,1)\}$
 - Ground truth $\mathbf{R} = [R_1, ..., R_S]$
 - Model output $\mathbf{O} = [O_1, ..., O_S]$

$$WER = \frac{\min_{(i,j) \in \mathcal{P}} (\sum_{i,j} edits(O_i, R_j))}{\sum_j len(R_j)}$$

Model	clean	other	2spk	Overall
RNN-T	6.5	15.5	66.3	38.7

- Vanilla DAT achieves 82% WERR on test-2spk w.r.t single-speaker RNN-T
 - WER increase from 6.5% to 9.2% on test-clean due to hypothesis splitting

Model	clean	other	2spk	Overall
RNN-T	6.5	15.5	66.3	38.7
DAT-MS-RNN-T	9.2	16.9	11.8	12.4

RNN-T sis splitting

- Vanilla DAT achieves 82% WERR on test-2spk w.r.t single-speaker RNN-T
 - WER increase from 6.5% to 9.2% on test-clean due to hypothesis splitting
- Speaker order labels help to follow the same speaker

Model	clean	other	2spk	Overall
RNN-T	6.5	15.5	66.3	38.7
DAT-MS-RNN-T	9.2	16.9	11.8	12.4
+ speaker order label	7.7	16.2	11.7	11.8

RNN-T sis splitting

- Vanilla DAT achieves 82% WERR on test-2spk w.r.t single-speaker RNN-T
 - WER increase from 6.5% to 9.2% on test-clean due to hypothesis splitting
- Speaker order labels help to follow the same speaker
- Multi-style training improves generalization

Model	clean	other	2spk	Overall
RNN-T	6.5	15.5	66.3	38.7
DAT-MS-RNN-T	9.2	16.9	11.8	12.4
+ speaker order label	7.7	16.2	11.7	11.8
+multi-style	7.5	15.4	11.0	11.2

RNN-T sis splitting

- Vanilla DAT achieves 82% WERR on test-2spk w.r.t single-speaker RNN-T •
 - WER increase from 6.5% to 9.2% on test-clean due to hypothesis splitting
- Speaker order labels help to follow the same speaker ullet
- Multi-style training improves generalization ullet
- Overall performance of PIT-MS-RNN-T is 4% relatively better than DAT-MS-RNN-T ullet

clean	other	2spk	Overall
6.5	15.5	66.3	38.7
9.2	16.9	11.8	12.4
7.7	16.2	11.7	11.8
7.5	15.4	11.0	11.2
7.9	15.8	10.6	11.2
7.6	15.2	10.2	10.8
	6.5 9.2 7.7 7.5 7.9	6.515.59.216.97.716.27.515.47.915.8	6.5 15.5 66.3 9.2 16.9 11.8 7.7 16.2 11.7 7.5 15.4 11.0 7.9 15.8 10.6

- On-par performance on test-2spk with SOT-AED model w/o speaker inventory \bullet
 - Fewer parameters \bullet
 - Streaming-capable with algorithmic latency of 30ms (feature frame rate) ullet

Mo	del	#params	#speakers in training	clean	2spk
PIT-AE	ED[12]	160.7M	1,2	6.7	11.9
SOT-AF	ED [12]	135.6M	1,2,3	4.6	11.2
SOT-Al	ED[13]	135.6M	1,2,3	4.5	10.3
+ spe	akerID	145.5M	1,2,3	4.2	8.7
PIT-MS-	RNN-T	80.9M	1,2	7.6	10.2

Conclusions and outlook

- Proposed a novel multi-speaker RNN-T model architecture which can be ulletdirectly applied in streaming applications
 - On-par algorithmic latency with single-speaker RNN-T \bullet
- Benchmarked on artificially mixed partially overlapping speech task •
 - On par result with non-streaming SOT model \bullet
- Investigated single-speaker performance of a multi-speaker model ullet
- Future work \bullet
 - Improve robustness to errors on single-speaker data \bullet
 - Test on real data (LibriCSS, AMI, CHiME-6, etc.) •
 - Generalize to ambiguous number of speakers during inference (1 to N) ullet

THANK YOU

References

- 1. Y. Isik, J. L. Roux, Z. Chen, S. Watanabe, and J. R. Hershey, "Single-channel multi-speaker separation using deep clustering," Interspeech, Sep 2016
- 2. T. Menne, I. Sklyar, R. Schluter, and H. Ney, "Analysis of deep clustering as preprocessing for automatic speech recognition of sparsely overlapping speech," Interspeech, Sep 2019.
- 3. S. Settle, J. L. Roux, T. Hori, S.Watanabe, and J. R. Hershey, "End-to-end multi-speaker speech recognition," in ICASSP, 2018, pp. 4819–4823
- 4. T. von Neumann, K. Kinoshita, L. Drude, C. Boeddeker, M. Delcroix, T. Nakatani, and R. Haeb-Umbach, "End-to-end training of time domain audio separation and recognition," ICASSP, May 2020
- 5. J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, "Deep clustering: Discriminative embeddings for segmentation and separation," ICASSP, Mar 2016
- 6. Y. Luo and N. Mesgarani, "TaSNet: Time-domain audio separation network for real-time, single-channel speech separation," ICASSP, Apr 2018
- 7. D. Yu, M. Kolbaek, Z.-H. Tan, and J. Jensen, "Permutation invariant training of deep models for speakerindependent multi-talker speech separation," ICASSP, Mar 2017
- 8. D. Yu, X. Chang, and Y. Qian, "Recognizing multitalker speech with permutation invariant training," Interspeech, Aug 2017
- 9. Y. Qian, X. Chang, and D. Yu, "Single-channel multitalker speech recognition with permutation invariant training," Speech Communication, vol. 104, p. 1–11, Nov 2018

References (continue)

- 10. H. Seki, T. Hori, S. Watanabe, J. Le Roux, and J. R. Hershey, "A purely end-to-end system for multi-speaker speech recognition," Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume Long *Papers), 2018*
- 11. X. Chang, Y. Qian, K. Yu, and S. Watanabe, "End-to-end monaural multi-speaker ASR system without pretraining, ICASSP, May 2019
- 12. N. Kanda, Y. Gaur, X. Wang, Z. Meng, and T. Yoshioka, "Serialized output training for end-to-end overlapped speech recognition," Interspeech, Oct 2020
- 13. N. Kanda, Y. Gaur, X. Wang, Z. Meng, Z. Chen, T. Zhou, and T. Yoshioka, "Joint speaker counting, speech recognition, and speaker identification for overlapped speech of any number of speakers," Interspeech, Oct 2020
- 14. A. Graves, "Sequence transduction with recurrent neural networks," CoRR, vol. abs/1211.3711, 2012
- 15.
- 16. V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An asr corpus based on public domain audio books," in ICASSP, 2015, pp. 5206–5210
- 17. D. S. Park, Y. Zhang, C.-C. Chiu, Y. Chen, B. Li,W. Chan, Q. V. Le, and Y. Wu, "SpecAugment on large scale datasets," ICASSP, May 2020
- 18. A. Tripathi, H. Lu, and H. Sak, "End-to-end multi-talker overlapping speech recognition," in ICASSP, 2020, pp. 6129– 6133

