

Space-Shift Sampling of Graph Signals

Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro

Dept. of Electrical and Systems Engineering University of Pennsylvania ssegarra@seas.upenn.edu http://www.seas.upenn.edu/~ssegarra/

ICASSP, March 23, 2016

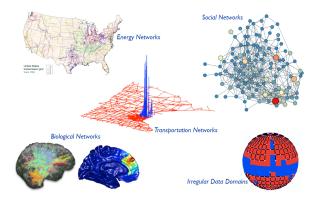
Network science analytics

▶ Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

Network science analytics

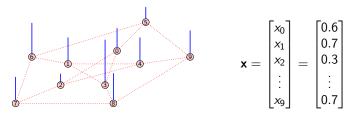
- Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
- Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- ► Interest here not in G itself, but in data associated with nodes in V
 ⇒ The object of study is a graph signal
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Motivating examples - Graph signals



- ► Graph SP: broaden classical SP to graph signals [Shuman etal'13] ⇒ Our view: GSP well suited to study network processes
- ► As.: Signal properties related to topology of G (e.g., smoothness) ⇒ Algorithms that fruitfully leverage this relational structure

- Consider a graph G(V, E). Graph signals are mappings x : V → R
 ⇒ Defined on the vertices of the graph (data tied to nodes)
- May be represented as a vector $\mathbf{x} \in \mathbb{R}^N$
 - \Rightarrow x_n denotes the signal value at the *n*-th vertex in \mathcal{V}
 - \Rightarrow Implicit ordering of vertices



Graph-shift operator

- To understand and analyze \mathbf{x} , useful to account for G's structure
- ► Graph *G* is endowed with a graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (captures local structure in *G*)
- **S** can take nonzero values in the edges of G or in its diagonal

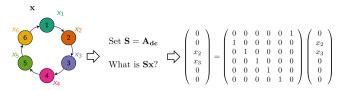
$$\begin{array}{c} 3 \quad 4 \\ \hline 2 \quad 5 \\ 1 \end{array} \qquad \mathbf{S} = \begin{pmatrix} S_{11} \quad S_{12} \quad 0 \quad 0 \quad S_{15} \quad 0 \\ S_{21} \quad S_{22} \quad S_{23} \quad 0 \quad S_{25} \quad 0 \\ 0 \quad S_{23} \quad S_{33} \quad S_{34} \quad 0 \quad 0 \\ 0 \quad 0 \quad S_{43} \quad S_{44} \quad S_{45} \quad S_{46} \\ S_{51} \quad S_{52} \quad 0 \quad S_{54} \quad S_{55} \quad 0 \\ 0 \quad 0 \quad 0 \quad S_{64} \quad 0 \quad S_{66} \end{pmatrix}$$

• Ex: Adjacency **A**, degree **D**, and Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$ matrices

► Q: Why is **S** called shift?

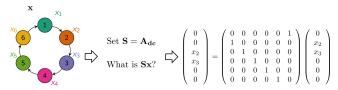
Relevance of the graph-shift operator

• Q: Why is S called shift? A: Resemblance to time shifts



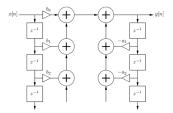
Relevance of the graph-shift operator

• Q: Why is S called shift? A: Resemblance to time shifts



S will be building block for GSP algorithms

 \Rightarrow Same is true in the time domain (filters and delay)



- \blacktriangleright S is a linear operator that can be computed locally at the nodes in ${\cal V}$
- ► Consider the graph signal y = Sx and node *i*'s neighborhood N_i ⇒ Node *i* can compute y_i if it has access to x_i at j ∈ N_i

$$y_i = \sum_{j \in \mathcal{N}_i} S_{ij} x_j, \quad i \in \mathcal{V}$$

• Recall $S_{ij} \neq 0$ only if i = j or $(j, i) \in \mathcal{E}$

3-4		$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$		$(\begin{array}{c} S_{11} \\ S_{21} \end{array})$	$S_{12} \\ S_{22}$	$0 \\ S_{23}$	0 0	$S_{15} \\ S_{25}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	
		y_3	<u> </u>	0	S_{32}	S_{33}	S_{34}	0	0	x ₃	
$(2)_{-5}$	· ·	y_4		0	0	S_{43}	S_{44}	S_{45}	S_{46}	x 4	
		y_5		S_{51}	S_{52}	0	S_{54}	S_{55}	0	x_5	
(1)		y_6	/	0	0	0	S_{64}	0	S_{66} /	$\left(x_{6} \right)$	

• If $\mathbf{y} = \mathbf{S}^2 \mathbf{x} \Rightarrow y_i$ found using values x_j within 2 hops

- ► As.: S related to generation (description) of the signals of interest ⇒ Spectrum of S = VAV⁻¹ will be especially useful to analyze x
- ► The Graph Fourier Transform (GFT) of x is defined as

 $\tilde{\mathbf{x}} = \mathbf{V}^{-1} \mathbf{x}$

• While the inverse GFT (iGFT) of $\tilde{\mathbf{x}}$ is defined as

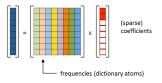
 $\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$

 \Rightarrow Eigenvectors $\mathbf{V} = [\mathbf{v}_1, ..., \mathbf{v}_N]$ are the frequency basis (atoms)

Ex: For the directed cycle (temporal signal) ⇒ GFT ≡ DFT
 ⇒ DFT matrix diagonalizes circulant matrices like S = A_{dc}

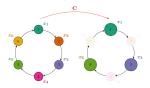
Sampling is a cornerstone inverse problem in classical SP ⇒ How to find x ∈ ℝ^N using P < N observations?</p>

- Sampling is a cornerstone inverse problem in classical SP ⇒ How to find x ∈ ℝ^N using P < N observations?</p>
- Our focus on bandlimited signals, but other models possible
- $\Rightarrow \tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}$ sparse
- $\Rightarrow \mathbf{x} = \sum_{k \in \mathcal{K}} \tilde{x}_k \mathbf{v}_k$, with $|\mathcal{K}| = \mathcal{K} < \mathcal{N}$
- \Rightarrow **S** involved in generation of **x**
- \Rightarrow Agnostic to the particular form of **S**
 - ► Two sampling schemes were introduced in the literature
 ⇒ Selection [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]
 ⇒ Aggregation [Marques15, Segarra15]
 - We combine both to create a hybrid scheme \Rightarrow Space-shift sampling



Revisiting sampling in time

- There are two ways of interpreting sampling of time signals
- ▶ We can either freeze the signal and sample values at different times



▶ We can fix a point (present) and sample the evolution of the signal

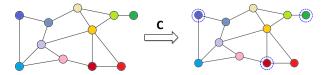
► Both strategies coincide for time signals but not for general graphs ⇒ Give rise to selection and aggregation sampling

Selection sampling

Intuitive extension of sampling to graph signals

- \Rightarrow Select a subset of the nodes and observe the signal value
- \Rightarrow Let $\mathbf{C} \in \{0,1\}^{P \times N}$ be a selection matrix (P rows of \mathbf{I}_N)

$\overline{\mathbf{x}} = \mathbf{C}\mathbf{x}$



Goal: recover x based on x

- \Rightarrow Assume that the support of \mathcal{K} is known (w.l.o.g. $\mathcal{K} = \{k\}_{k=1}^{\mathcal{K}}$)
- \Rightarrow Since $\tilde{x}_k = 0$ for k > K, define $\tilde{\mathbf{x}}_K$ as (with $\mathbf{E}_K := [\mathbf{e}_1, ..., \mathbf{e}_K]$)

$$\tilde{\mathbf{x}}_{\boldsymbol{K}} := [\tilde{x}_1, ..., \tilde{x}_{\boldsymbol{K}}]^{\mathsf{T}} = \mathbf{E}_{\boldsymbol{K}}^{\mathsf{T}} \tilde{\mathbf{x}}$$

• Use $\bar{\mathbf{x}}$ to find $\tilde{\mathbf{x}}_{K}$, and then recover \mathbf{x} as

$$\mathbf{x} = \mathbf{V}_{K} \mathbf{\tilde{x}}_{K} = \mathbf{V}_{K} (\mathbf{C} \mathbf{V}_{K})^{-1} \mathbf{\bar{x}}$$

Aggregation sampling

- Idea: incorporating S to the sampling procedure
- Consider shifted (aggregated) signals y^(l) = S^lx
 ⇒ y^(l) = Sy^(l-1) ⇒ they can be found sequentially
 ⇒ S_{ij} = 0 if i ∉ N_j ⇒ Only local exchanges are required

• Form signal $\mathbf{y}_i = [y_i^{(0)}, y_i^{(1)}, ..., y_i^{(N-1)}]^T$

Aggregation sampling

- Idea: incorporating S to the sampling procedure
- Consider shifted (aggregated) signals y^(l) = S^lx
 ⇒ y^(l) = Sy^(l-1) ⇒ they can be found sequentially
 ⇒ S_{ij} = 0 if i ∉ N_j ⇒ Only local exchanges are required

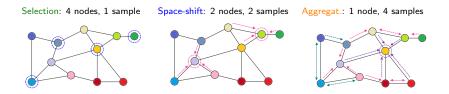
• Form signal $\mathbf{y}_i = [y_i^{(0)}, y_i^{(1)}, ..., y_i^{(N-1)}]^T$

- ► Sampled signal $\bar{\mathbf{y}}_i = \mathbf{C}\mathbf{y}_i \Rightarrow \bar{\mathbf{y}}_i$ can be obtained locally by node *i*
- Goal: recover **x** based on $\overline{\mathbf{y}}_i \Rightarrow$ Find $\mathbf{\tilde{x}}_K$ and recover **x** as $\mathbf{x} = \mathbf{V}_K \mathbf{\tilde{x}}_K$
- ▶ Define $\bar{\mathbf{u}}_i := \mathbf{V}_{k}^T \mathbf{e}_i$ and the Vandermonde matrix $\boldsymbol{\Psi}$ s.t. $\Psi_{kl} = \lambda_k^{l-1}$

$$\mathbf{x} = \mathbf{V}_{\mathcal{K}} \tilde{\mathbf{x}}_{\mathcal{K}} = \mathbf{V}_{\mathcal{K}} diag^{-1}(\bar{\mathbf{u}}_i) (\mathbf{C} \mathbf{\Psi}^{\mathsf{T}} \mathbf{E}_{\mathcal{K}})^{-1} \bar{\mathbf{y}}_i$$

Space-shift sampling

- Hybrid scheme combining selection and aggregation sampling
 - \Rightarrow Selection \Rightarrow sampling the dimension of nodes
 - \Rightarrow Aggregation \Rightarrow sampling the dimension of shift applications
 - \Rightarrow Space-shift \Rightarrow sampling the 2D space spanned by the above



• Define the matrix $\mathbf{Y} := [\mathbf{y}^{(0)}, \dots, \mathbf{y}^{(N-1)}] = [\mathbf{x}, \mathbf{S}\mathbf{x}, \dots, \mathbf{S}^{N-1}\mathbf{x}]$

- \Rightarrow Selection samples the first column of **Y**
- \Rightarrow Aggregation samples the *i*-th row of **Y**
- \Rightarrow Space-shift samples the whole matrix **Y**

Space-shift sampling: Recovery

- ▶ Define the matrix $\mathbf{\hat{\Gamma}} := [\mathsf{diag}(\mathbf{\bar{u}}_1), \dots, \mathsf{diag}(\mathbf{\bar{u}}_N)]^{\mathsf{T}}$ and $\boldsymbol{\gamma} := \mathrm{vec}(\mathbf{Y}^{\mathsf{T}})$
- ▶ Let $\mathbf{C} \in \{0,1\}^{K imes N^2}$ be a selection matrix $\Rightarrow \bar{\boldsymbol{\gamma}} = \mathbf{C} \boldsymbol{\gamma}$

Recovery of space-shift sampling

Signal \mathbf{x} can be recovered from K space-shift samples as

$$\mathbf{x} = \mathbf{V}_{K} \mathbf{ ilde{x}}_{K} = \mathbf{V}_{K} \left(\mathbf{C} (\mathbf{I} \otimes (\mathbf{\Psi} \mathbf{E}_{K})) \mathbf{ ilde{\mathbf{T}}}
ight)^{-1} ar{\mathbf{\gamma}}$$

provided that the inverse exists.

- ▶ If $C(I \otimes (\Psi E_{\kappa})) \hat{T}$ is not invertible \Rightarrow additional samples required
- ▶ In general, invertibility is not easy to check a priori \Rightarrow Selection
- For some forms of **C**, invertibility can be ensured \Rightarrow Aggregation

Appealing features of Space-shift Sampling

- Natural scheme when S encodes an underlying network dynamics
- Appropriate for inference based on a few access nodes
- Includes cases where node observes neighboring signal values
- Consistent with sampling in DSP
- Recovery error is reduced by combining selection and aggregation

Extensions

- Sampling in the presence of noise
 - \Rightarrow Design of optimal sampling schemes
 - \Rightarrow Aggregating nodes and C play a key role in minimizing error
- ► Unknown frequency support ⇒ Sparse recovery

Joint recovery and support identification

- We have assumed the first K frequencies of \mathbf{x} to be active
- \blacktriangleright A more challenging problem \Rightarrow Frequency support ${\cal K}$ is unknown
- ▶ Defining $\Upsilon := [diag(u_1), \dots, diag(u_N)]^T$, reformulate the problem

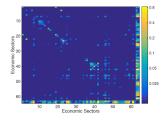
$$\mathbf{\tilde{x}}^* = \arg\min_{\mathbf{v}} \quad ||\mathbf{\tilde{x}}||_0 \qquad ext{s.t.} \quad \mathbf{\bar{\gamma}} = \mathsf{C} ig(\mathsf{I} \otimes \mathbf{\Psi} ig) \mathbf{\Upsilon} \mathbf{\tilde{x}}$$

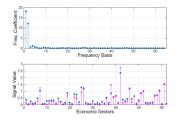
- ▶ Identifiable when $C(I \otimes \Psi)\Upsilon$ is full spark and has at least 2K rows
- For some **C**, full-spark can be assessed by inspecting $\{\lambda_i\}_{i=1}^N$ and **V**
- Computationally, the ℓ_0 norm renders the optimization non-convex \Rightarrow Convexify it by replacing the ℓ_0 with an ℓ_1 norm
- \blacktriangleright Recoverability based on the coherence and the RIP of $C(I\otimes\Psi)\Upsilon$
- ▶ With noise, the constraint can be replaced by $\|\bar{\gamma} C(I \otimes \Psi) \Upsilon \tilde{x}\|_2^2 < \epsilon$

Comparing sampling schemes

▶ 62 economic sectors in USA + 2 synthetic sectors

- \Rightarrow Graph: average flows of production in 2007-2010, **S** = **A**
- \Rightarrow Signal x: Production of sectors in 2011 (approx. bandlimited)





- Comparable minimum errors
- Median errors reduced via space-shift sampling

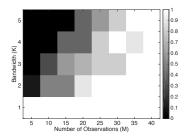
	Sampling	Error			
	Sampling	Min.	Median		
[x] _i	[x] _j	$[\mathbf{x}]_k$	[x]/	.0039	4.2
[x] _i	[S x];	[S ² x] _i	[S ³ x];	.0035	.019
[S x];	$[Sx]_j$	$[Sx]_k$	[S x] _/	.0035	.030
$[S^2x]_i$	$[\mathbf{S}^2 \mathbf{x}]_i$	$[\mathbf{S}^2 \mathbf{x}]_k$	$[S^2x]_l$.0035	.0055
[x] _i	[S x] _i	[x] _j	[S x] _j	.0035	.039

Sampling the US economy: Support identification

Signals of bandwidth $K \in \{1, 2, \dots, 5\}$ on the economic network

 \Rightarrow Value of K known but not the specific support

- ▶ Nr. of observations M, i.e. rows of **C**, where $M \in \{5, 10, \dots, 40\}$
 - \Rightarrow Chosen among values in original signal x and first shift **S**x
- Solve iterative randomized version of convex relaxation



- For large M and small K \Rightarrow perfect recovery
- Gradual detriment for more adverse configurations

Presented basic building blocks of GSP

 \Rightarrow Graph signal x, graph-shift operator $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$, GFT \mathbf{V}^{-1}

- Discussed differences between selection and aggregation sampling
- Selection and aggregation can be combined in space-shift sampling
 All of them reduce to traditional sampling in DSP
- Natural scheme for network processes

 \Rightarrow Appropriate for inference with few access nodes

- Conditions for perfect recovery and joint support identification
- Illustrated concepts via the U.S. economic network