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Network science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Network as graph G = (V, E): encode pairwise relationships

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Motivating examples – Graph signals

I Graph SP: broaden classical SP to graph signals [Shuman etal’13]

⇒ Our view: GSP well suited to study network processes

I As.: Signal properties related to topology of G (e.g., smoothness)

⇒ Algorithms that fruitfully leverage this relational structure
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Graph signals

I Consider a graph G (V, E). Graph signals are mappings x : V → R
⇒ Defined on the vertices of the graph (data tied to nodes)

I May be represented as a vector x ∈ RN

⇒ xn denotes the signal value at the n-th vertex in V
⇒ Implicit ordering of vertices
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Graph-shift operator

I To understand and analyze x, useful to account for G ’s structure

I Graph G is endowed with a graph-shift operator S ∈ RN×N

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (captures local structure in G )

I S can take nonzero values in the edges of G or in its diagonal

I Ex: Adjacency A, degree D, and Laplacian L = D− A matrices
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Relevance of the graph-shift operator

I Q: Why is S called shift?

A: Resemblance to time shifts

I S will be building block for GSP algorithms

⇒ Same is true in the time domain (filters and delay)

Santiago Segarra Space-Shift Sampling of Graph Signals 7



Relevance of the graph-shift operator

I Q: Why is S called shift? A: Resemblance to time shifts

I S will be building block for GSP algorithms

⇒ Same is true in the time domain (filters and delay)

Santiago Segarra Space-Shift Sampling of Graph Signals 8



Relevance of the graph-shift operator

I Q: Why is S called shift? A: Resemblance to time shifts

I S will be building block for GSP algorithms

⇒ Same is true in the time domain (filters and delay)

Santiago Segarra Space-Shift Sampling of Graph Signals 9



Locality of the graph-shift operator

I S is a linear operator that can be computed locally at the nodes in V

I Consider the graph signal y = Sx and node i ’s neighborhood Ni

⇒ Node i can compute yi if it has access to xj at j ∈ Ni

yi =
∑
j∈Ni

Sijxj , i ∈ V

I Recall Sij 6= 0 only if i = j or (j , i) ∈ E

I If y = S2x ⇒ yi found using values xj within 2 hops
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Graph Fourier transform (GFT)

I As.: S related to generation (description) of the signals of interest

⇒ Spectrum of S = VΛV−1 will be especially useful to analyze x

I The Graph Fourier Transform (GFT) of x is defined as

x̃ = V−1x

I While the inverse GFT (iGFT) of x̃ is defined as

x = Vx̃

⇒ Eigenvectors V = [v1, ..., vN ] are the frequency basis (atoms)

I Ex: For the directed cycle (temporal signal) ⇒ GFT ≡ DFT

⇒ DFT matrix diagonalizes circulant matrices like S = Adc
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Sampling of graph signals

I Sampling is a cornerstone inverse problem in classical SP

⇒ How to find x ∈ RN using P < N observations?

I Our focus on bandlimited signals, but other models possible

⇒ x̃ = V−1x sparse

⇒ x =
∑

k∈K x̃kvk , with |K|=K<N

⇒ S involved in generation of x

⇒ Agnostic to the particular form of S

I Two sampling schemes were introduced in the literature

⇒ Selection [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]

⇒ Aggregation [Marques15, Segarra15]

I We combine both to create a hybrid scheme ⇒ Space-shift sampling
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Revisiting sampling in time

I There are two ways of interpreting sampling of time signals

I We can either freeze the signal and sample values at different times

I We can fix a point (present) and sample the evolution of the signal

I Both strategies coincide for time signals but not for general graphs
⇒ Give rise to selection and aggregation sampling
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Selection sampling

I Intuitive extension of sampling to graph signals
⇒ Select a subset of the nodes and observe the signal value
⇒ Let C ∈ {0, 1}P×N be a selection matrix (P rows of IN)

x̄ = Cx

C"

I Goal: recover x based on x̄
⇒ Assume that the support of K is known (w.l.o.g. K = {k}Kk=1)
⇒ Since x̃k = 0 for k > K , define x̃K as (with EK := [e1, ..., eK ])

x̃K := [x̃1, ..., x̃K ]T = ET
K x̃

I Use x̄ to find x̃K , and then recover x as

x = VK x̃K = VK (CVK )−1x̄
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Aggregation sampling

I Idea: incorporating S to the sampling procedure

I Consider shifted (aggregated) signals y(l) = Slx

⇒ y(l) = Sy(l−1) ⇒ they can be found sequentially

⇒ Sij = 0 if i /∈ Nj ⇒ Only local exchanges are required

I Form signal yi = [y
(0)
i , y

(1)
i , ..., y

(N−1)
i ]T

I Sampled signal ȳi = Cyi ⇒ ȳi can be obtained locally by node i

I Goal: recover x based on ȳi ⇒ Find x̃K and recover x as x = VK x̃K
I Define ūi := VT

Kei and the Vandermonde matrix Ψ s.t. Ψkl = λl−1k

x = VK x̃K = VKdiag−1(ūi )(CΨTEK )−1ȳi
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Kei and the Vandermonde matrix Ψ s.t. Ψkl = λl−1k

x = VK x̃K = VKdiag−1(ūi )(CΨTEK )−1ȳi
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Space-shift sampling

I Hybrid scheme combining selection and aggregation sampling

⇒ Selection ⇒ sampling the dimension of nodes

⇒ Aggregation ⇒ sampling the dimension of shift applications

⇒ Space-shift ⇒ sampling the 2D space spanned by the above

Selection: 4 nodes, 1 sample Space-shift: 2 nodes, 2 samples Aggregat.: 1 node, 4 samples

I Define the matrix Y := [y(0), . . . , y(N−1)] = [x,Sx, . . . ,SN−1x]

⇒ Selection samples the first column of Y

⇒ Aggregation samples the i-th row of Y

⇒ Space-shift samples the whole matrix Y
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Space-shift sampling: Recovery

I Define the matrix Ῡ := [diag(ū1), . . . , diag(ūN)]T and γ := vec(YT )

I Let C ∈ {0, 1}K×N2

be a selection matrix ⇒ γ̄ = Cγ

Recovery of space-shift sampling

Signal x can be recovered from K space-shift samples as

x = VK x̃K = VK

(
C(I⊗ (ΨEK ))Ῡ

)−1
γ̄

provided that the inverse exists.

I If C(I⊗ (ΨEK ))Ῡ is not invertible ⇒ additional samples required

I In general, invertibility is not easy to check a priori ⇒ Selection

I For some forms of C, invertibility can be ensured ⇒ Aggregation
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Space-shift sampling: Discussion

Appealing features of Space-shift Sampling

I Natural scheme when S encodes an underlying network dynamics

I Appropriate for inference based on a few access nodes

I Includes cases where node observes neighboring signal values

I Consistent with sampling in DSP

I Recovery error is reduced by combining selection and aggregation

Extensions

I Sampling in the presence of noise

⇒ Design of optimal sampling schemes

⇒ Aggregating nodes and C play a key role in minimizing error

I Unknown frequency support ⇒ Sparse recovery
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Joint recovery and support identification

I We have assumed the first K frequencies of x to be active

I A more challenging problem ⇒ Frequency support K is unknown

I Defining Υ := [diag(u1), . . . , diag(uN)]T , reformulate the problem

x̃∗ = arg min
x̃

||x̃||0 s.t. γ̄ = C
(
I⊗Ψ

)
Υx̃

I Identifiable when C(I⊗Ψ)Υ is full spark and has at least 2K rows

I For some C, full-spark can be assessed by inspecting {λi}Ni=1 and V

I Computationally, the `0 norm renders the optimization non-convex

⇒ Convexify it by replacing the `0 with an `1 norm

I Recoverability based on the coherence and the RIP of C(I⊗Ψ)Υ

I With noise, the constraint can be replaced by ‖γ̄−C
(
I⊗Ψ

)
Υx̃‖22<ε
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Comparing sampling schemes

I 62 economic sectors in USA + 2 synthetic sectors

⇒ Graph: average flows of production in 2007-2010, S = A

⇒ Signal x: Production of sectors in 2011 (approx. bandlimited)

I Comparable minimum errors

I Median errors reduced via
space-shift sampling

Sampling strategy
Error

Min. Median
[x]i [x]j [x]k [x]l .0039 4.2

[x]i [Sx]i [S2x]i [S3x]i .0035 .019
[Sx]i [Sx]j [Sx]k [Sx]l .0035 .030

[S2x]i [S2x]j [S2x]k [S2x]l .0035 .0055
[x]i [Sx]i [x]j [Sx]j .0035 .039

Santiago Segarra Space-Shift Sampling of Graph Signals 22



Sampling the US economy: Support identification

I Signals of bandwidth K ∈ {1, 2, . . . , 5} on the economic network

⇒ Value of K known but not the specific support

I Nr. of observations M, i.e. rows of C, where M ∈ {5, 10, . . . , 40}
⇒ Chosen among values in original signal x and first shift Sx

I Solve iterative randomized version of convex relaxation
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I For large M and small K

⇒ perfect recovery

I Gradual detriment for more
adverse configurations
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Conclusion

I Presented basic building blocks of GSP

⇒ Graph signal x, graph-shift operator S = VΛV−1, GFT V−1

I Discussed differences between selection and aggregation sampling

I Selection and aggregation can be combined in space-shift sampling

⇒ All of them reduce to traditional sampling in DSP

I Natural scheme for network processes

⇒ Appropriate for inference with few access nodes

I Conditions for perfect recovery and joint support identification

I Illustrated concepts via the U.S. economic network
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