Introduction

Problem: multi-speaker overlapped speech recognition by end-to-end (E2E) ASR system **Constraints:** low-latency decoding **Proposed model:** streaming Recurrent Neural Network Transducer (RNN-T) with multi-output encoder capable to separate and recognize overlapped speech. Training approaches:

deterministic assignment training (DAT) guided by speaker-order labeling

permutation invariant training (PIT) **Results: 10.2%** WER on 2-speaker LibriSpeechMix, competitive with non-streaming E2E ASR

Data: LibriSpeechMix [12, 13]

- **Train:** artificially mixed LibriSpeech utterances from 960h training set, overall overlap ratio: 28%
- **Dev/Eval:** artificially mixed LibriSpeech utterances from dev/test-clean partitions, overall overlap ratios: 25% (dev) and 24% (eval)

Single-speaker RNN-T

Proposed multi-speaker models are based on a single-speaker RNN-T. Given a sequence of acoustic feature vectors $\mathbf{x} = \{x_1, x_2, ..., x_T\}$ and the corresponding label sequence $\mathbf{y} = \{y_1, ..., y_U\}$ RNN-T estimates conditional probability $P(\mathbf{y}|\mathbf{x})$

STREAMING MULTI-SPEAKER ASR WITH RNN-T

Ilya Sklyar*, Anna Piunova*, Yulan Liu {ilsklyar,piunova,lyulan}@amazon.com

Evaluation

nce word error rate (WER)					
$\mathbf{R} = [R_1, \dots, R_S]$					
: $\mathbf{O} = [O_1,, O_S]$					
tions: $\mathcal{P} = \{(1, 2), (2, 1)\}$					

 $WER = \frac{\min_{(i,j) \in \mathcal{P}} \left(\sum_{i,j} (edits(O_i, R_j)) \right)}{\sum_{i,j} len(R_i)}$

Results

Table 1: WER comparison of DAT-MS-RNN-T and PIT-MS

	clean	other	2spk	Overall
	6.5	15.5	66.3	38.7
	9.2	16.9	11.8	12.4
abel	7.7	16.2	11.7	11.8
	7.5	15.4	11.0	11.2
	7.9	15.8	10.6	11.2
	7.6	15.2	10.2	10.8

Table 2: WER comparison of PIT-MS-RNN-T and non streaming E2E ASR models on 1,2-spk test sets.

#params	#speakers in training	clean	2spk
160.7M	1,2	6.7	11.9
135.6M	1,2,3	4.6	11.2
135.6M	1,2,3	4.5	10.3
145.5M	1,2,3	4.2	8.7
80.9M	1,2	7.6	10.2

Conclusions

Multi-speaker RNN-T is on-par with non-streaming E2E models reported in literature

Multi-style training together with explicit speakerorder labeling improve MS-RNN-T generalization to unseen single- and multi-speaker data