

PROGRESSIVE MULTI-STAGE FEATURE MIX FOR PERSON RE-IDENTIFICATION

Yan Zhang 1, Binyu He 1, Li Sun 1,2, and Qingli Li 1

1Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241 Shanghai, China

2State Key Laboratory of Mathematical Engineering and Advanced Computing, 214125 Wuxi, China

Introduction

2.2. Attentive Hard Mix

1.1. Motivation

- CNN suffers from only focusing on small local regions
- Taking batch drop at the intermediate feature level expands the highly-responded areas under no rules

(c)

(b)

(a)

(d)

(c)

Fig. 3. There are two steps, i.e. the block ranking step and the feature Hard-Mix step. Firstly, taking a Grad-CAM image, corresponding to the expected class, the block ranking turns it into a binary mask (0 for the highlighted regions in Grad-CAM and 1 for the rest). Then, according to the binary mask, the highlighted regions of an anchor feature map will be replaced by the corresponding region features from a random negative feature map in the feature Hard-Mix step.

Fig. 1. The visualizations of the gradient based class activation map of baseline (Resnet50+GAP), BDB and our approach. Red boxes indicate the target attention area.

(d)

1.2. Contribution

(b)

(a)

- We design a **Progressive Multi-stage feature Mix (PMM)** to suppress the most salient features for the current classifier, and force the head in the later stage to find other clues.
- We propose an **attentive Hard-Mix** feature augmentation method, which synthesizes the harder samples with mixing the negative pairs.

2. Our Approach 2.1. PMM framework

3. Experiments

Table 1. Comparison results with the state-of-the-art methods on the classic reID datasets.

Methods	CUHK03		DukeMTMC		Market-1501	
	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP
AOS	54.6	56.1	79.2	62.1	91.3	78.3
PCB+RPP	62.8	56.7	83.3	69.2	93.8	81.6
CAMA	66.6	64.2	85.8	72.9	94.7	84.5
BDB*	73.5	69.8	87.1	74.5	94.0	84.9
Ours	76.3	73.0	88.0	74.6	94.1	85.2

Table 2. Comparison results between different feature augmentation methods.

Methods	CUHK03		DukeMTMC		Market-1501	
	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP
CutOut	73.5	69.8	87.1	74.5	94.1	84.7
CutMix	74.3	69.9	85.8	72.0	92.8	82.4
A-CutMix	65.6	62.8	83.8	68.7	91.6	78.1
A-HardMix	76.3	73.0	88.0	74.6	94.1	85.2

Fig. 2.Three stages are appended after the backbone, and they are supervised by the same constrains. Each stage can attain their own Grad-CAM images in the training period, which can be then used to guide the feature Hard-Mix in the next stage. In the testing, the green features from different stages are **concatenated together as the final representation**.

Code: https://github.com/crazydemo/Progressive-Multi-stage-Feature-Mix-for-**Person-Re-Identification**

Fig. 4. The Grad-CAM image g from each stage during test (gradients are back propagated from the predicted class). The visualization is conducted on CUHK03-Detected.