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Problem

Learning classification models from data distributed
over multiple parties

Without sharing of the raw healthcare information,
due to privacy and legal concerns

Horizontally partitioned structured data

Mediator




Distributed Extremely Randomized Trees
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Secure Multi-Party Computation
for Privacy-Preserving Distributed ERT
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Secure Multi-Party Computation
for Privacy-Preserving Distributed ERT

Each data holder party sends personal random seeds to all data holder parties
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Secure Multi-Party Computation
for Privacy-Preserving Distributed ERT
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Secure Multi-Party Computation
for Privacy-Preserving Distributed ERT

Send SSALT, ..., SSAF

Receive SSAp, ..., SSA,




Secure Multi-Party Computation
for Privacy-Preserving Distributed ERT
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Efficient Handling of Large-Scale Data
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Efficient Handling of Large-Scale Data
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Evaluation

Criteria of evaluation for privacy-preserving data mining approaches
Classification performance, overhead, and privacy

Table 1: Scalability and privacy comparison against existing technigues

Approach Party Communication (/V is the number of parties) Min Number of
Send Receive Total (All N parties) Colluding Parties
Distributed ERT ~ All 1 1 2N 1
Data Holders 1 0
k-PPD-ERT Mediator 0 N1 2(N —-1) k+1(k<N)
k-1 Parties N N -1
Shamir [31] One Party N—-1 N+k—-2 2(N°-N+k—-1) k(k<N)
The Rest N-1 N-1
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Conclusion

k-PPD-ERT is an extension of ERT algorithm learning classification models when data is
distributed.

The secure multi-party computation technique for k-PPD-ERT is resilient to the collusion of up
to k data holder parties.

The secure multi-party computation technique for k-PPD-ERT is efficient with respect to the
communication overhead.

Limited participation of data holder parties at every round of the learning process decreases
the overhead without any noticeable loss in the learning performance.



