"You Should Probably Read This": Hedge Detection in Text

Denys Katerenchuk, Rivka Levitan The Graduate Center, CUNY Brooklyn College, CUNY

Hedge Detection

Problem:

Understanding the certainty level of a claim is crucial in areas such as medicine, finance, engineering, and many others where errors can lead to disastrous results.

What if a doctor says:

"I think you need surgery

immediately!"

Hedges are linguistic devices that are used to indicate uncertainty and mitigate orders.

Hedge phrase identifiers:

- modal verbs ("could", "might", etc.)
- peacock expressions ("very likely", "everyone", "I think", etc.)
- weasel words ("some believe", "clearly", etc.)

Data and Contributions

The CoNLL-2010 Wikipedia dataset

Wikipedia discussions pages are manually annotated as curtain or uncertain.

Corpus:

- 11110 train sentences
- (10% is used as validation set)
- 9634 test sentences
- F1-score

Challenges:

- The dataset is very small and unbalanced
- The data has been around for over 10 years
- The results hasn't been improved for over 4 years.

Related Work and Motivation

Bag-of-Words

Result: F1 - 60.17

M. Georgescul. A

hedgehop over a max-

margin framework using

Probabilistic

Result: F1 - 62.8

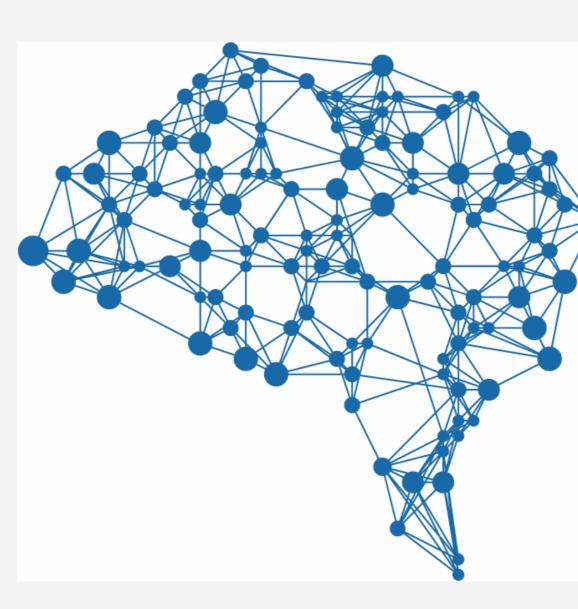
P. Jean, et al. "Uncertainty

detection in natural

language: A probabilistic

model." 2016.

Neural Networks



Result: F1 - 67.52

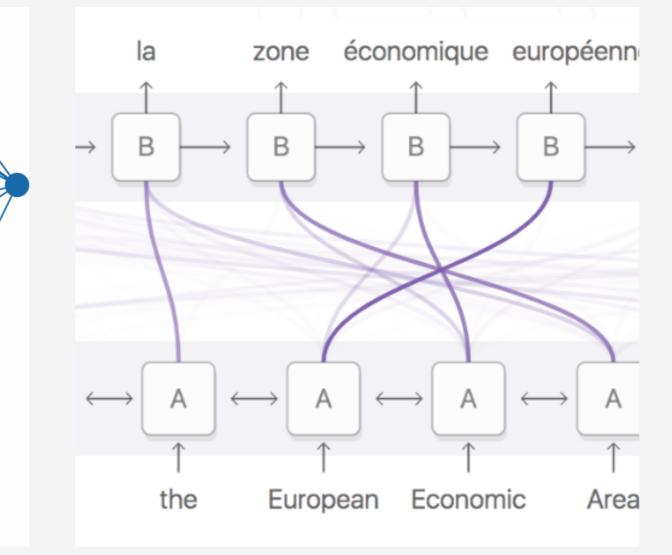
H. Adel, et al., "Exploring

Different Dimensions of

Attention for Uncertainty

Detection" 2017.

Transformers



Result: None (BioScope: F1 - 85)

M. Sinha, et al., "Relation Aware Attention Model for **Uncertainty Detection in** Text" 2020.

hedge cues. 2012.

Methods

1. Word Embeddings

Language Model	F1 Score
GoogleNews 300d	60.34
GloVe 100d	55.74
GloVe 300d 6B	63.12
GloVe 300d 840B	63.09
FastText 1M	62.08
FastText 2M	63.57
Custom Wiki 1Gb	61.99

2. NN Architectures

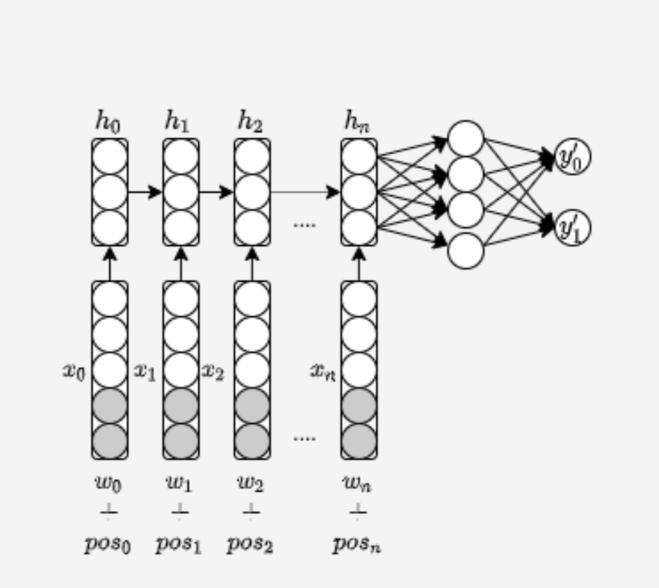
NN Model	Wiki 1G	GloVe	FastText	Mean	STD
CNN	57.38	58.34	59.36	58.36	0.99
GRU	62.07	64.23	65.04	63.7 8	1.54
LSTM	64.35	62.14	63.91	63.47	1.17
Transformer	57.18	57.91	54.74	56.61	1.66
CNN+At	56.86	58.22	62.79	59.29	3.17
GRU+At	62.13	63.33	65.40	63.62	1.65
LSTM+At	59.37	60.11	64.26	61.25	2.64
Mean	59.91	60.61	62.21		
STD	2.97	2.62	3.86		

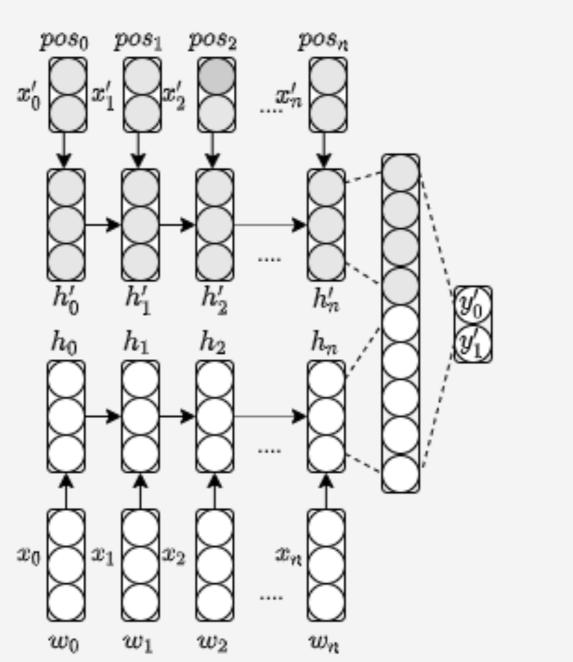
3. POS Tags

NN Model	F1 score
GRU	47.54
LSTM	48.47
GRU+At	48.27
LSTM+At	48.9

4. POS and Word Joint Models

4.1. Model Architectures

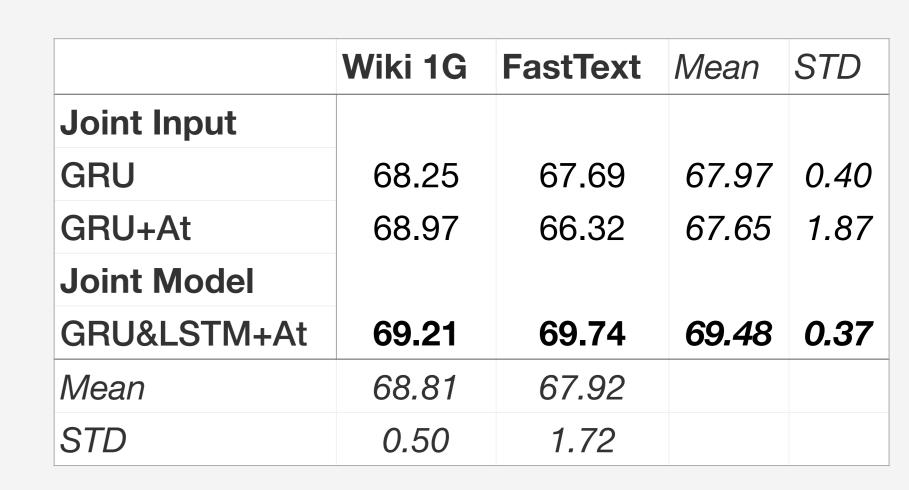




4.2. Training Results

	Wiki 1G	FastText	Mean	STD
Joint Input				
GRU	65.81	66.08	65.95	0.19
LSTM	61.69	66.14	63.92	3.15
GRU+At	65.46	65.45	<i>65.4</i> 6	0.01
LSTM+At	66.57	64.26	65.42	1.63
Joint Model				
GRU+At	64.42	64.54	64.48	0.08
LSTM+At	64.22	62.47	63.35	1.24
GRU&LSTM+At	64.82	66.09	65.46	0.90
Mean	64.71	65.00		
STD	1.56	1.36		

Results



	Wiki 1G	GloVe	FastText	Mean	STD
CNN	60.00	62.92	64.28	62.40	
GRU	70.24	67.54	68.97	68.92	
LSTM	69.14	65.22	68.43	67.60	
Transformer	63.27	65.22	68.43	65.64	
CNN+At	58.44	65.77	66.83	63.68	4.57
GRU+At	68.22	66.81	67.11	67.38	0.74
LSTM+At	68.27	65.26	67.94	67.16	1.65
Joint Input					
GRU	68.25	66.74	67.69	67.56	0.76
LSTM	68.91	67.92	66.45	67.76	1.24
GRU+At	68.97	66.35	66.32	67.21	1.52
LSTM+At	69.00	64.54	64.15	65.90	2.69
Joint Model					
GRU+At	68.29	63.21	66.85	66.12	2.62
LSTM+At	68.27	62.31	65.74	65.44	2.99
GRU&LSTM+At	69.21	68.35	69.74	69.10	0.70
Mean	67.03	65.58	67.07		
STD	3.68	1.87	1.63		

Conclusion

- We find that joint GRU & LSTM attention model overall produces high scores across three language models.
- However, the top score of 70.24 is achieved with a domain specific language model with a GRU based neural network.

The main contributions of this work are:

- 1. a comprehensive analysis of various neural network architectures and their performance on this task
- 2. a model formulation for including part-ofspeech information in the input
- 3. a new top score on the CoNLL-2010 Wikipedia dataset