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o s using measurements z from

objects x over k =1, ..., t.

An underwater surveillance Example: Sensor localisation in
network (Heidemann et. al, 2011, GPS denying environments such
adapted from Akyildiz, et.al, 2005) as underwater.
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Problem statement and the centralised solution

Multi- -sensor state space model

.\ ™~ P — -\ Vs
\ N \
\ /

[ 1 \ \ [
'\Z k—1) *®° Z k=1

@ The object state Xj evolves as a Markov chain with transition
density 7(xx|xx—1) and initial density 7(x)
@ Sensor i measures zj with a likelihood /;(z}|xx; 6;)

@ If latent parameters 6 = [01,...,0y] are known, only unknown is
Xi which is estimated using sensor histories z ,, ..., zN,

@ Solved by finding p(xk|2].,. ..., 2N, 0) for k =1,...,t using
Bayesian prediction and update recursions, i.e., flltering”.
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Centralised solution for estimating unknown 6
The likelihood for “parameter estimation in state space models”
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Prediction distribution of a (centralised) filter.

@ The likelihood is a product of update terms over k =1,....t
@ Computational cost is dominated by joint multi-sensor filtering.

@ The filtering complexity is combinatorial with the number of
sensors N (dimensionality of #), when the state-space model is
equipped with models tackling uncertainties in the number of
objects, measurement-object associations etc.
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Separable Likelihoods

Separable likelihoods

@ Provide approximate models based on single sensor filtering, i.e.,

use local prediction ,o(xk\z1 «_4) and update p(xx|Z}.,) forje V.
» provide scalability with the number of sensors
» exploit recent advances in single sensor filtering algorithms
» align well with distributed fusion architectures

@ First, we consider a pair of sensors / and j.
Quad-term separable likelihood

Approximate / (z{:t,z{:t|9) with [14_, q(z}, ZL |2 44, 2 1, 0)

. 7 g . . 1/2
[ | J e J | -/ ]
q(zkazk|z1:k—17z1;k_170) Kk(e) ( (Zk|z1 -k ) (zk’z1;k_17 ))

. L 1/2
x (P(2h12}4 0)P(ZH1Z1 41, 0) )

where k,(0) is the normalisation constant.

v
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Separable Likelihoods

Theorem (Kullback-leibler divergence of the approximation)

D(pllq) < 5 ( (HXZ4_1©) ~ HX|ZL_1: Zl 1, )

+ (HOGZi1,0) = HOZ 1, Zhi1,©)) )

1 , : .
+§ ( (H(XK|Z{:k’ @) - H(XK|Z{:k’ Z1,:k—1 ; @))
+ (HX 2, ©) = HXUl Z1 2 41, ©)) ) (1)

@ Better approximation when local prediction and estimation at
sensors i and j are accurate (small difference in Shannon
Entropies H with respect to joint filtering).
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Pairwise MRF Model with Separable Likelihood Edge
Potentials

@ Second, we assume that the local latent parameters ©; are
Markov with respect to G = (V, £) with edges associated with,
e.g., available communication links, neighbourhood relations etc...

p(O1Z] 4, .., Z) oc [ [wi(0n) [T 56i.6)),

iey (ij)e€

i) = po.i(0),  ¥50i,6) = | | a2k 2124 k-1, 21 41+ 011 6))
k=1
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Potentials

Message passing algorithm for estimation of ©

1: forall je V do = Local filtering

2:  Find p(xk|2 ) fork =1,...t

3: end for

4: forallje Vdo = Sample from priors

5: Sample 9,.(’) ~ po,i(0) forI=1,...,L

6: end for

7:fors=1,..,Sdo = S-steps of loopy belief propagation (LBP)

8: for all (i,j) € £ do = Evaluate separable likelihood edge potentials

o: Find f,(0”,00") = TTh—y a(2} 212} 4y, Z gy 07 0 for 1 =1, L

10: end for

11:  forall (i,j) e £do = Find LBP messages mj;s

12: sample 0" from m;(6;) = [ 450, 0)%;(0)  T1  myj(0))dojfor i =1, L
i"ene(j)\i

13: end for

14 forallieVdo = Update local marginals p;(6;)s

15: Sample 0" from p;(0;)oct;(6:) T Tjcpeiy Mi(0) for I =1, L

16: b 1yt 0¥

17:  end for

18: end for
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Example
: 1000 ﬁ—\?‘ s3 .
2000 1000 500 Eas;o(m) 500 1000
@ Linear model and additive - f
Gaussian uncertainties £, £
@ 6;s are unknown sensor i |
locations o i
@ sensor 1 is the origin of the
network coordinate frame @ < 10m average error
@ Average of 12.2s per edge
W(X{<|Xk—1) = N(X/f? Fx—1,Q) per iteration (compared to
li(zj | Xk; 0;) = N (zje; Hi(x¢ — 07), R;) 28.3s with joint filtering
edge pot.)
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Conclusion

Conclusion

We consider multi-sensor state space models underpinning fusion
networks and surveillance applications.

We address scalability of latent parameter estimation in these
models with the number of sensors.

We propose a quad-term separable likelihood which together with
pairwise MRFs facilitate scalability and distributed estimation.

Previously, we introduced a dual-term separable likelihood [1],
which can easily be used with random finite set models and solve
problems involving multiple objects, measurements with false
alarms, missed detections and association uncertainties.

The proposed likelihood has a smaller error bound and can be

used with hypothesis based multi-object filters [2]. It is not
straightforward to adopt it for random finite set models, however.

[1] Uney, Mulgrew, Clark “A cooperative approach to sensor localisation in distributed fusion networks,” IEEE TSP, March 2016.
[2] Uney, Mulgrew, Clark “Latent parameter estimation in fusion networks using separable likelihoods,” IEEE TSIPN, submitted to
the special issue on inference and learning over networks.
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