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Motivation

An underwater surveillance
network (Heidemann et. al, 2011,
adapted from Akyildiz, et.al, 2005)

Opportunistic sensor registration:
Estimation of respective sensor

position θT and orientation θE
using measurements z from

objects x over k “ 1, ..., t .
Example: Sensor localisation in

GPS denying environments such
as underwater.
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Problem statement and the centralised solution

Multi-sensor state space model

The object state Xk evolves as a Markov chain with transition
density πpxk |xk´1q and initial density πpx1q

Sensor i measures z i
k with a likelihood lipz i

k |xk ; θiq

If latent parameters θ “ rθ1, . . . , θNs are known, only unknown is
Xk which is estimated using sensor histories z1

1:k , . . . , z
N
1:k

Solved by finding ppxk |z1
1:k , . . . , z

N
1:k , θq for k “ 1, . . . , t using

Bayesian prediction and update recursions, i.e., “filtering”.
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Problem statement and the centralised solution

Centralised solution for estimating unknown θ

The likelihood for “parameter estimation in state space models”

l
´

z1
1:t , ..., z

N
1:t |θ “ rθ1, . . . , θNs

¯

“

t
ź

k“1

ppz1
k , . . . , z

N
k |z

1
1:k´1, . . . , z

N
1:k´1, θq

ppz1
k , . . . , z

N
k |z

1
1:k´1, . . . , z

N
1:k´1, θq “

ż

¨

˝

N
ź

j“1

lpz j
k |xk , θq

˛

‚ˆ ppxk |z1
1:k´1, . . . , z

N
1:k´1, θq

looooooooooooooomooooooooooooooon

Prediction distribution of a (centralised) filter.

dpxk q

The likelihood is a product of update terms over k “ 1, . . . , t
Computational cost is dominated by joint multi-sensor filtering.
The filtering complexity is combinatorial with the number of
sensors N (dimensionality of θ), when the state-space model is
equipped with models tackling uncertainties in the number of
objects, measurement-object associations etc.
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Separable Likelihoods

Separable likelihoods
Provide approximate models based on single sensor filtering, i.e.,
use local prediction ppxk |z

j
1:k´1q and update ppxk |z

j
1:k q for j P V.

§ provide scalability with the number of sensors
§ exploit recent advances in single sensor filtering algorithms
§ align well with distributed fusion architectures

First, we consider a pair of sensors i and j .

Quad-term separable likelihood

Approximate l
´

z i
1:t , z

j
1:t |θ

¯

with
śt

k“1 qpz i
k , z

j
k |z

i
1:k´1, z

j
1:k´1, θq

qpz i
k , z

j
k |z

i
1:k´1, z

j
1:k´1, θq fi

1
κk pθq

´

ppz i
k |z

j
1:k , θqppz

j
k |z

j
1:k´1, θq

¯1{2

ˆ

´

ppz j
k |z

i
1:k , θqppz

i
k |z

i
1:k´1, θq

¯1{2

where κk pθq is the normalisation constant.

Murat Üney Dist. Est. Using Separable Likelihoods 24/03/2016 6 / 11



Separable Likelihoods

Theorem (Kullback-leibler divergence of the approximation)

Dpp||qq ď
1
2

˜

´

HpXk |Z
j
1:k´1,Θq ´ HpXk |Z

j
1:k´1,Z

i
1:k´1,Θq

¯

`

´

HpXk |Z i
k´1,Θq ´ HpXk |Z

j
1:k´1,Z

i
1:k´1,Θq

¯

¸

`
1
2

˜

´

HpXk |Z
j
1:k ,Θq ´ HpXk |Z

j
1:k ,Z

i
1:k´1,Θq

¯

`

´

HpXk |Z i
1:k ,Θq ´ HpXk |Z i

1:k ,Z
j
1:k´1,Θq

¯

¸

, (1)

Better approximation when local prediction and estimation at
sensors i and j are accurate (small difference in Shannon
Entropies H with respect to joint filtering).
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Pairwise Markov Random Fields with Separable Likelihood Edge
Potentials

Pairwise MRF Model with Separable Likelihood Edge
Potentials

Second, we assume that the local latent parameters Θi are
Markov with respect to G “ pV, Eq with edges associated with,
e.g., available communication links, neighbourhood relations etc...

ppθ|Z 1
1:t , ...,Z

N
1:tq 9

ź

iPV
ψipθiq

ź

pi,jqPE
ψt

ijpθi , θjq,

ψipθiq “ p0,ipθiq, ψt
ijpθi , θjq “

t
ź

k“1

qpz i
k , z

j
k |z

i
1:k´1, z

j
1:k´1, θi , θjq
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Pairwise Markov Random Fields with Separable Likelihood Edge
Potentials

Message passing algorithm for estimation of Θ
1: for all j P V do Ź Local filtering
2: Find ppxk |z

j
1:k q for k “ 1, . . . t

3: end for
4: for all j P V do Ź Sample from priors
5: Sample θplqi „ p0,i pθi q for l “ 1, . . . , L
6: end for
7: for s “ 1, ...,S do Ź S-steps of loopy belief propagation (LBP)
8: for all pi, jq P E do Ź Evaluate separable likelihood edge potentials
9: Find ψt

i,j pθ
plq
i , θ

plq
j q “

śt
k“1 qpz i

k , z
j
k |z

i
1:k´1, z

j
1:k´1, θ

plq
i , θ

plq
j q for l “ 1, . . . , L

10: end for
11: for all pi, jq P E do Ź Find LBP messages mji s
12: Sample θ̃plqi from mji pθi q “

ş

ψt
ij pθi , θj qψj pθj q

ś

i1Pnepjqzi
mi1 j pθj q dθj for l “ 1, . . . , L

13: end for
14: for all i P V do Ź Update local marginals pi pθi qs
15: Sample θplqi from pi pθi q9ψi pθi q

ś

jPnepiqmji pθi q for l “ 1, . . . , L

16: θ̂i Ð
1
L
řL

l“1 θ
plq
i

17: end for
18: end for
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Example

Example
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Linear model and additive
Gaussian uncertainties
θis are unknown sensor
locations
sensor 1 is the origin of the
network coordinate frame

πpxk |xk´1q “ N pxk ; Fxk´1,Qq

lipz i
k |xk ; θiq “ N pz i

k ; Hipxk ´ θiq,Riq

ă 10m average error
Average of 12.2s per edge
per iteration (compared to
28.3s with joint filtering
edge pot.)
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Conclusion

Conclusion
We consider multi-sensor state space models underpinning fusion
networks and surveillance applications.
We address scalability of latent parameter estimation in these
models with the number of sensors.
We propose a quad-term separable likelihood which together with
pairwise MRFs facilitate scalability and distributed estimation.
Previously, we introduced a dual-term separable likelihood [1],
which can easily be used with random finite set models and solve
problems involving multiple objects, measurements with false
alarms, missed detections and association uncertainties.
The proposed likelihood has a smaller error bound and can be
used with hypothesis based multi-object filters [2]. It is not
straightforward to adopt it for random finite set models, however.

r1s Uney, Mulgrew, Clark “A cooperative approach to sensor localisation in distributed fusion networks,” IEEE TSP, March 2016.
r2s Uney, Mulgrew, Clark “Latent parameter estimation in fusion networks using separable likelihoods,” IEEE TSIPN, submitted to
the special issue on inference and learning over networks.
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