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Introduction Proposed ADL-MVDR Speech Materials
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The corpus contains 205500 audio clips (roughly 200 hours)
Network architecture with sampling rate set to 16 kHz. The simulated multi-

channel audio data contains sources from different
We propose a novel all deep learning MVDR (ADL-MVDR) framework, where the cRF for covariance matrix estimation:

. . . " speakers (either target or interfering sources). The audios
matrix inversion and eigenvalue decomposition are replaced by two recurrent S _—yL K F ( v ¢ P ( . g. & .)
neural networks (RNNs), to resolve both issues at the same time CRF = Dit.=—1. 2r2=—1< s(t+ 1, f+ 1)« Y(t+ 1, f+ Ty), are further mixed with random cuts of noises recorded

D (t,f) = gCRF(tf) Scrp(6.) indoors and different reverberation conditions (T60s from
N Zi=a Ms (/M (6.1’ 0.05 s to 0.7 s) are applied (Tan et al., 2020).

trained with neural networks.

Contributions of this work:
(1). A novel ADL-MVDR framework which can be jointly trained stably with the where the cRF (I\/Iz.ack an.d Habets,. 2019) is equ.lvalent to (2K+1)X(2L+1) number of cRMs that each applied Results Analysis

front-end filter estimator for predicting frame-level beamforming weights. to the corresponding shifted version of the noisy spectrogram. D includi | d di luati
(2). Replacing the matrix inversion and PCA involved in the MVDR solution with erpos (including real-wor F?COF lr\g evaluation) are
two separate RNNs, instead of utilizing the traditional mathematical approach. RNNs for replacing matrix inversion and PCA in MVDR: available at: https://zzhang68.github.io/adlmvdr/

(3). A complex ratio filtering method (Mack and Habets, 2019, denoted as cRF) The GRU-Nets can better utilize temporal information from previous frames for estimating statistical

to further stabilize joint training process and estimate the covariance matrix | | terms than conventional frame-wise approaches that are based on heuristic updating factors (Souden et | | ° The proposed ADL-MVDR system achieves significantly
more accurately al. 2011; Tammen et al., 2019). better results across all metrics and ASR accuracy than

purely NN-based systems.
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Conventional Mask-based MVDR ) (&, 1) (®ss(t, 1)) h(t, f) = — @“Ngtl{)v(t’f) * The proposed ADL-MVDR system achieves about 17%
. . . . @ﬁ(tjf) = GRU-Netyn(®nn (T, f)) v (t, f)enn(t, f)o(t, f) PESQ improvement over the baseline MVDR system
MVDR solution (HIgUChI et al. 2018; Shimada et al. 2018): with cRF (i.e., 3.42 vs. 2.92). In terms of ASR accuracy,
Experimental Results: the proposed ADL-MVDR system outperforms MVDR

| n with cRF by a large margin (i.e., 12.73% vs. 15.91%).
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metrics (e.g., Si-SNR: 12.50 dB vs. 12.23 dB) and ASR
accuracy (i.e., 22.07% vs. 22.49%) than NN with cRM.
Slight improvements can be found on conventional

Covariance matrix (speech part):

NN with cRF MVDR with cRF Proposed ADL-MVDR with ¢cRF :
P MVDR systems due to utterance-level weights.
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MVDR with cRM [8 255 276 296 284 | 373 288 256 | 2.90 10.62 12.04 16.85 promising and it could be generalized to many speech
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The noise covariance matrix can be obtained in a similar way. Proposed ADL-MVDR with cRF 3x3) | 3.04 330 348 348 | 417 341 3.07 | 3.42 | 14.80 15.45 12.73 facks
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