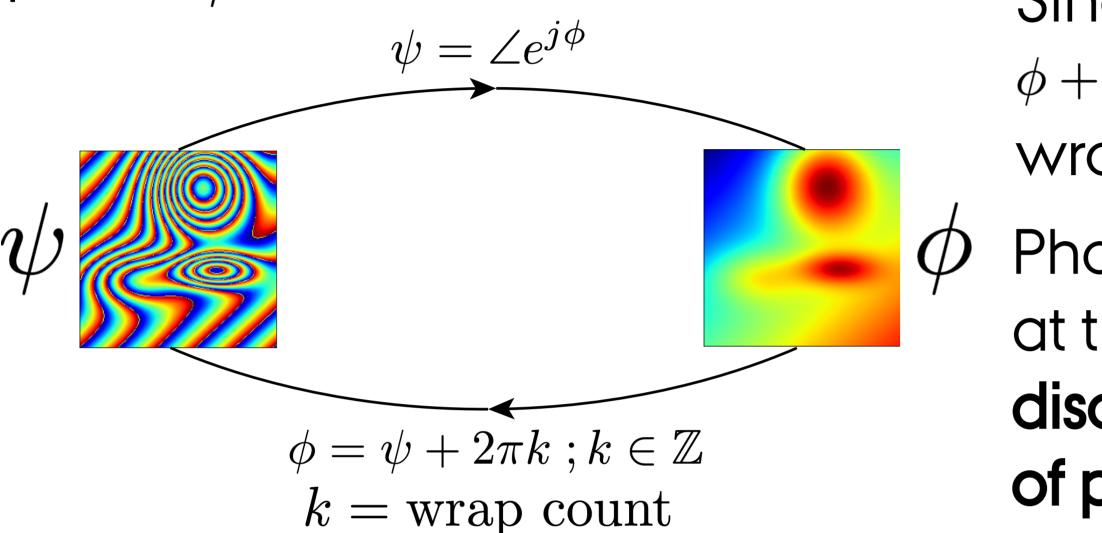


A JOINT CONVOLUTIONAL AND SPATIAL QUAD-DIRECTIONAL LSTM NETWORK FOR PHASE UNWRAPPING

Introduction

Objective of phase unwrapping : Recover the true phase ϕ from wrapped phase ψ



Phase unwrapping (PU) problem is prevalent in applications such as quantita--tive susceptibility mapping in MRI, synthetic aperture radar interferometry, and fringe projection techniques.

Previous Work

- I. Path Following Algorithms (QGPU, Branch-Cut Algorithms, etc.)
- 2. Minimum Norm Approaches
- 3. CNN based Approaches
 - Formulating PU as a Semantic Segmentation Task (PhaseNet 2.0) $\phi^* = \psi + 2\pi f(\psi; \theta^*)$ where $\theta^* = \operatorname{argmin} \mathcal{L}(f(\psi; \theta), k)$
 - Formulating PU as a Regression Task (Ryu et al.) $\phi^* = g(\psi; \theta^*)$ where $\theta^* = \operatorname{argmin} \mathcal{L}(g(\psi; \theta), \phi)$

Shortcomings : High Computational Cost (2), Low Noise Robustness (1), Difficulty of CNNs to model global spatial dependencies (3), High Data-intensiveness (3), Inappropriate Loss Functions (3)

Methodology

Regression formulation: $\phi^* = g(\psi; \theta^*)$ where $\theta^* = \operatorname{argmin} \mathcal{L}_c(g(\psi; \theta), \phi)$ Variance of Error Loss

Total Variation of Error Loss $\rightarrow \mathcal{L}_{tv} = \mathbb{E}[|\hat{\phi}_x - \phi_x| + |\hat{\phi}_y - \phi_y|]$

46th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2021 Toronto, Ontario, Canada

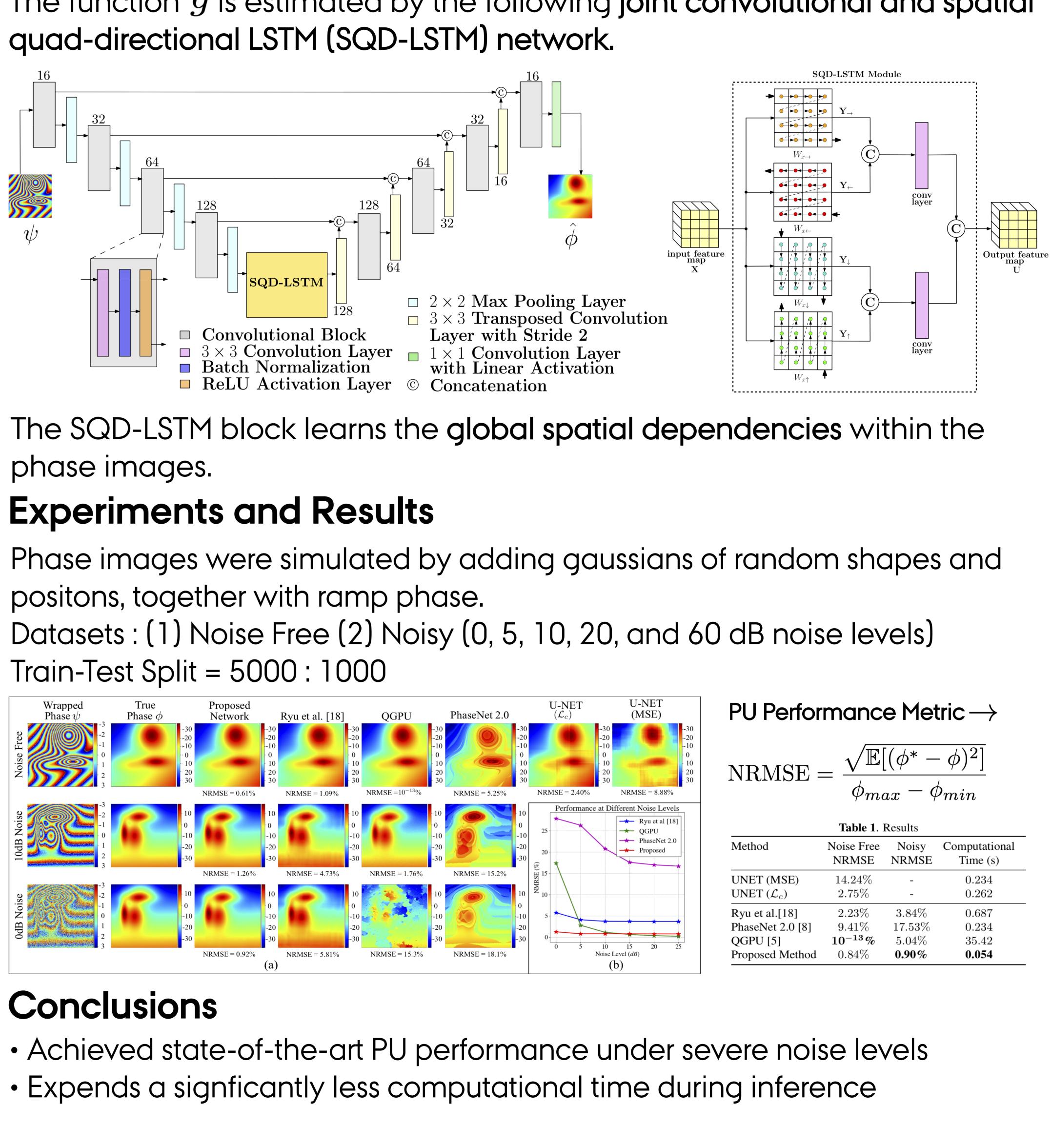
Malsha Perera*, Ashwin De Silva*

Department of Electronics and Telecommunication Engineering, University of Moratuwa, Sri Lanka

Since $\psi = \angle e^{j\phi}$, the family denoted by $\phi + 2\pi\pi; n \in \mathbb{Z}$ will give rise to the same wrapped phase ψ

Phase unwrapping becomes challenging at the presence of **noise**, **phase** discontinuities, and rapid variation of phase.

here, $\mathcal{L}_c = \lambda_1 \mathcal{L}_{var} + \lambda_2 \mathcal{L}_{tv}$ (problem-specific composite loss function) $\rightarrow \mathcal{L}_{var} = \mathbb{E}\left[(\hat{\phi} - \phi)^2\right] - \left(\mathbb{E}\left[(\hat{\phi} - \phi)\right]\right)^2$ Here, ϕ is the true phase and $\dot{\phi} = g(\psi; \theta)$ is the predicted phase



The proposed \mathcal{L}_c allows for multiple solutions at convergence while enforcing the similarity between predicted phase and true phase.

The function g is estimated by the following joint convolutional and spatial

Paper ID : 5122

Table 1. Results			
Method	Noise Free	Noisy	Computational
	NRMSE	NRMSE	Time (s)
UNET (MSE) UNET (\mathcal{L}_c)	$14.24\%\ 2.75\%$	-	$0.234 \\ 0.262$
Ryu et al.[18]	$\begin{array}{c} 2.23\% \\ 9.41\% \\ \mathbf{10^{-13}\%} \\ 0.84\% \end{array}$	3.84%	0.687
PhaseNet 2.0 [8]		17.53%	0.234
QGPU [5]		5.04%	35.42
Proposed Method		0.90%	0.054