
Reducing Spelling Inconsistencies in Code-Switching ASR using 
Contextualized CTC Loss

Burin Naowarat1, Thananchai Kongthaworn1, Korrawe Karunratanakul2, Sheng Hui Wu3, and Ekapol Chuangsuwanich1

1Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand
2ETH Zurich, Switzerland, 3NewEra AI Robotics, Taiwan

• Introduce additional context prediction heads:
• For predicting “surrounding” letters [1]

• The middle head is trained by CTC loss.
• The context heads are trained by Cross Entropy (CE) loss.
• The model is trained in a multi-task learning manner.

CCTC model

• Average error rates

Ø Explore the effectiveness of CCTC in other sequence 
predicting problems

Ø Explore the benefits of using wider contexts
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Finally, the CCTC loss is the combination of the CTC loss and
the context losses up to the K

th order as shown in (6). The weights
of the left and right contexts can be set differently with ↵ and �.
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4. DATASET

For our experiments, we used a 200-hour Thai speech corpus,
crawled from public YouTube podcast channels. The utterances
were then manually transcribed. The recordings were preprocessed
to 16kHz and 16-bit depth. CS with English was found in 4.4%
of the training set, 4.3% of the development set, and 5.7% of the
test set. More details are shown in Table 1. The YouTube channels
in the test set are different from the training and development sets.
Therefore, speakers in the test set are not in the training data.

For performance comparison and analysis, we separated the de-
velopment set and test set into the monolingual part containing only
Thai utterances and the CS part. We refer to these subsets as TH and
TH-CS from now on. Note that training and hyperparameter tuning
were still done on the entire set, making no such distinction.

Train Development Test
duration 150 Hr 24 Hr 26 Hr
#total utterances 190K 30K 35K
#TH-CS utterances 8.4K 1.3K 2K
#TH letters 7M 1M 1M
#EN letters 84K 30K 19K
#TH words 1.9M 293K 333K
#EN words 14K 2K 3K
#TH vocabulary 36K 12K 13K
#EN vocabulary 3K 1K 1K

Table 1. Statistics of the dataset used in this work

5. EXPERIMENTS AND RESULTS

We conducted a series of experiments to measure the performance of
models trained with our proposed CCTC loss. The experiments are
designed to compare the CCTC loss with the standard CTC loss. The
details of our implementation are provided in Sec. 5.1. We present
the results on our TH-EN dataset in Sec. 5.2, and on the LibriSpeech
dataset in Sec. 5.3. We also show the effect of different CCTC loss
weights in Sec. 5.4 and different sizes of beam width in Sec. 5.5.

5.1. Experimentation details

We adopted a NAR and fully-convolutional model Wav2Letter+
[18], a modified version of Wav2Letter [19, 20], as our base model.
It comprises of 17 1D-convolutional layers and two fully-connected

layers at the end. We added context prediction heads right after the
last layer of the base model as shown in Fig. 1. For simplicity, we
only considered 1st-order CTCC. We also set ↵ = � and tuned them
using the development set.

Since the labels for the context heads are derived from the pre-
dicted path of the middle head, it is important that the context losses
are applied only when these predictions are reliable. Therefore, in
all experiments, we started by training the models with only the CTC
loss for 300 epochs. Afterwards, the context losses were included,
and the training resumed for an additional of 100 epochs. This addi-
tional training was also performed on the CTC baseline models. For
each mini-batch, the context labels were generated on-the-fly with
the current model’s output path for efficiency.

The default settings of Wav2Letter+1 were used with some ex-
ceptions. The Adam optimizer [21] was used instead of the orig-
inal SGD optimizer. The Layer-wise Adaptive Rate Control [22]
and weight decay were not used as we found them hurting the per-
formance. We replaced the polynomial decay with an exponential
decay with a rate of 0.98.

LM rescoring was also applied to investigate more realistic se-
tups. We curated two corpora with 27M words/145M letters from
Thai Wikipedia and 69M words/330M letters from Pantip (Thai
Q&A forum). For each corpus, we did word tokenization using
DeepCut [23] and trained word-based n-gram models using KenLM
[24]. The final LM is obtained by n-gram interpolation. A beam
width of 64 was used for LM rescoring unless stated otherwise.

At training time, context heads and the middle head were jointly
optimized in a multi-task manner. At inference time, context heads
were removed to preserve memory usage and computational cost
since transcriptions were inferred by the middle head only.

Data Model WER (%)
argmax beam 3-gram

Development set

TH CTC 15.01 14.89 13.27
CCTC 14.67* 14.58* 13.17*

TH-CS CTC 28.02 27.76 24.09
CCTC 27.57* 27.43 23.78

Test set

TH CTC 15.66 15.52 13.47
CCTC 15.30* 15.22* 13.42

TH-CS CTC 27.73 27.74 25.04
CCTC 27.33* 27.27* 24.56*

Table 2. The evaluation on development and test sets. The * symbol
indicates a significant difference at p < 0.05 to the baseline CTC
using MAPSSWE two-tailed tests.

5.2. Effect of CCTC loss on EN-TH dataset

In the CS dataset setup, we investigated the performance of word
recognition on the model trained by CCTC loss compared to stan-
dard CTC loss using a standard metric: Word Error Rate (WER).

Table 2 shows that CCTC loss outperforms CTC loss in both
with and without LM setups. In the monolingual TH test set, we
found that the more context we provided to the decoder the lesser
performance gains we observed. The relative improvements of
CCTC over CTC decreased from 2.3% to 1.9% and 0.4% when we
changed from an argmax decoder to beam search decoder without
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• Contextualized CTC (CCTC) loss is defined below:
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&
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• We used the prediction from the previous iteration as  
ground truths for training context heads (ℒ!").
• Consecutive duplicates are ignored.
• Blank tokens are ignored.

Summary

• No letter dependency raises the problem of:
• Inconsistent spelling
• Mixing alphabets from many languages within a 

single word è unreadable
• Example: คน ท่ี มี folลเวอร์ เพียง แค่ ห้า พัน

fɒl.əʊ.ər

• Wrong character ordering
• Predicting `ฉนย` instead of the ground truth `ไฉน`.

cha.na.ya cha.nǎy

• The sound of the middle letter, ฉ, comes first.

• The training set includes both monolingual and CS 
utterances.

• The evaluation set is separated into:
• TH (Thai Monolingual)
• TH-CS (Thai-English code-switching)

• The model is a fully-convolutional Wav2Letter+ [2].
• The asterisk indicates significant difference using 

MAPSSWE test.

Results on Monolingual English
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• Non-autoregressive models produce 
inconsistent spellings in Code-Switching ASR.

• CCTC loss mitigates the problem by:
• Adding language dependencies to letters 

without:
• Losing parallelizability
• Needing of frame-level alignments
• Modifying the output units

• We show the effectiveness of CCTC in both 
Code-Switching (CS) ASR and monolingual 
ASR.

3196

• Train: LibriSpeech clean 100 hr subset
• Test: LibriSpeech clean

Motivation
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Fig. 3. Comparison between models for selected examples. Aligned
differences are highlight in different colors.

changed from an argmax decoder to beam search decoder without
LM and with LM, respectively. In contrast, we found the opposite
trend in the TH-CS test set. The relative improvements steadily in-
creased from 1.4% to 1.7% and 2.0%. These complementary gains
were an effect of having both short (CCTC) and long (LM) context
information.

Further qualitative analysis shows that CTCC mostly fixes the
inconsistencies in the spelling. Fig. 3. depicts the word “follower”
spelled with a mixture of Thai and English alphabets in the CTC
model, while CCTC model outputs English alphabets consistently.
The phoneme sequence /ol/ only appears in loanwords in Thai, mak-
ing the model heavily prefers to output “ol.”

Note that spelling inconsistencies still exist after applying LM
rescoring for both CTC and CCTC models. However, CCTC reduces
the number of words spelled with both Thai and English characters
by half, proving the usefulness of CCTC for CS ASR. To completely
remove the inconsistent words, one can increase the LM weight.
However, this can cause issues for out-of-vocabulary words.

We also attempted to train a Listen-Attend-Spell (LAS) model
[23, 24] as a representative autoregressive model. The results on TH
and TH-CS dev sets were 16% and 30% WER, much worse than the
CTC baseline. This is consistent with other works that were trained
on data of similar size [24, 25]2, Thus, we decided not to include
the results in the comparison as LAS models seem to require larger
amounts of training data to perform well.

5.3. Effect of CCTC loss on Monolingual English

In this experiment, we investigated the performance of CCTC loss on
a 100 hours subset of LibriSpeech [26]. The goal of this experiment
is to determine whether CTCC is beneficial in other languages.

Table 3 summarizes WER on the test-clean utterances. We
provided results from the Wav2Letter++ [27] model taken from
the Wav2Letter tutorial3 which was trained on the same subset as
a strong baseline. The CCTC model improves the WER over the
CTC model by 3.1% relative when used with an argmax decoder.
Although the improvement is small when LM rescoring is applied,
it still suggests that applying CCTC loss consistently yields perfor-
mance gain over CTC loss without losing inference speed.

5.4. Effect of CCTC context loss weight

As the weights of the context losses, ↵ and �, control the trade-
off between the generated contexts and the middle prediction during
training, we studied how the weights can affect the performance.
Fig. 4 summarizes the results on the entire (TH and TH-CS) dev set.

2We trained the model on LibriSpeech 100 hours for the comparison.
3https://github.com/facebookresearch/wav2letter/tree/recipes-conv-glu-

paper/tutorials/1-librispeech clean

Model Decoder WER
Wav2Letter+ w/ CTC greedy 22.00
Wav2Letter+ w/ CCTC greedy 21.32
Wav2Letter++ w/ CTC [27] beam w/ 3-gram LM 18.97
Wav2Letter+ w/ CTC beam w/ 3-gram LM 15.72
Wav2Letter+ w/ CCTC beam w/ 3-gram LM 15.67

Table 3. The evaluation on LibriSpeech test-clean set.

Fig. 4. WER on the dev set as the context loss weight changes

The optimal context loss weight is larger when a greedy decoder
is used compared to a beam search decoder. This is due to the fact
that when the external LM is not available, the model needs to rely
more on the context heads to make consistent predictions. In gen-
eral, we found any value between 0.1-0.2 yields improvement over
regular CTC on both LibriSpeech and our Thai corpus.

5.5. Effect of beam width

We studied the correlation between beam width and the WER of both
CTC and CCTC models on the dev set. We did the experiment by
varying the beam size from 32 up to 1024. Fig. 5 shows that CCTC
consistently improves the WER of both TH and TH-CS dev sets. The
gain from CTCC loss and LM rescoring seems to be complementary
regardless of the size of beam.

6. CONCLUSIONS

We introduced CCTC loss for incorporating context information into
a CTC-based NAR model without increasing inference time. We
showed that the CCTC loss improved results in utterances with CS
by encouraging context consistency in the predicted path. We believe
that the technique of adding additional context dependencies in the
CCTC loss can be helpful for CS ASR regardless of the language.
In the future, we plan to investigate the impact of different left and
right context weights as it might be more natural for the model to
depend more on the preceding characters. We also plan to measure
the effect of incorporating larger context sizes into the CCTC loss.

Fig. 5. Performance comparison between CTC and CTCC using
different size of beam for LM rescoring

[3]

Code-Switching ASR
• Code-Switching (CS) speech alternates languages within 

an utterance.
• Borrow words
• Thai: คนที่มี follower เพียงแค6 5000

• Eng:  The person who has only 5000 followers.

• Borrow phrases
• Thai: ผม work from home มาเกือบจะ 4 เดือนแล้ว

• Eng: I have worked from home for almost 4 months.

• Fully convolutional non-autoregressive model is fast.
• It predicts all tokens along time axis at once.
• It lacks dependencies between predicted letters

burin


