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Problems of
time-delay 
neural 
networks 
(TDNN)

BWM is equivalent to the first layer 
of a single-hidden layer TDNN 

e
To train the TDNN, error signals (MSE) 
are formed in the final layer. Then the 
parameters are trained by BP.

● Backpropagation: Each unit will only receive the gradient information 
from the top layer. 

● Spurious Correlation: The output layer of the MLP creates spurious 
correlations between the units.

● MSE: It’s only an error measurement based on the second moments. It 
can not be used if the dimensionalities mismatch.

input layer hidden layer
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1.      Bank of Wiener models
● Block-oriented models
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● BWM forms a SIMO/MIMO system. BWM outputs learns explicitly 
the bases of a projection space by bringing the desired as the target to 
the hidden layer.

● BWM has the same structure as the first layer of a single-hidden-layer 
TDNN. Training BWM does not require backpropagation (BP). There 
is no spurious correlations from a two-layer neural networks.
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Given a BWM with K Wiener models. For the k-th Wiener model.

The k-th output:

The series of Wiener models outputs: 

The linear combination of BWM outputs defines a projection space. After 
training BWM, a least-square solution is applied to yield the minimum MSE.

To train this model, we have to use a new cost function quadratic mutual 
information (QMI)
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Rényi’s entropy:

Gaussian kernel:

Parzen density estimator:

2.      Quadratic mutual information

The estimator to Rényi’s entropy becomes
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Similarly, given sample pairs                         , we can estimate the joint entropy as

The quadratic mutual information (QMI) can be constructed in the form

QMI has been broadly used in machine learning and time series analysis:

● Jose C. Principe. Information theoretic learning: Renyi’sentropy and kernel perspectives, 2010.
● Dongxin Xu and Jose C. Principe. Training mlps layer-by-layer with the information potential, IJCNN, 1999.
● Luis G. Sanchez Giraldo and Jose C. Principe. Information theoretic learning with infinitely divisible kernels, ICLR, 2013
● Austin J. Brockmeier, John S. Choi, Evan G. Kriminger, Joseph T Francis, and Jose C. Principe. Neural decoding with kernel-based 

metric learning, Neural Computation, 2014
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We can easily write the density estimation in the expectation form:

Similarly, we can use this form to estimate Rényi’s entropy of a given distribution:

The equivalent form for quadratic mutual information is thus

We call this form the empirical embedding of QMI (E-QMI).

This cost function can be used to quantify the dependency across different dimensions, thus 
fits perfectly for training BWM
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4.      Designing QMI cost functions to train BWM

Why are modifications needed to use E-QMI as a cost functions?

By Cauchy-Schwarz inequality, we have

Thus we always have                             for any mapper. 

However if we maximize the cost function, it could be unbounded since now we 
have a SIMO/MIMO system.

joint pdf

marginal pdf



Department of Electrical & Computer Engineering

The BWM outputs:

The target:

Type-I normalization 

Normalize the model output and the target by their standard deviations

In this way, we keep each Wiener model output and the target in the proper range. 

Type-I cost:
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Suppose the special case              , the value of the cost function becomes

By adding a constant, we want this term to satisfy

Solving for b, we obtain the solution

Using this normalization scheme, we can construct 

which will always be bounded by 1.

Type-II normalization 
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To train the BWM, we take the summation of all Wiener model outputs

Adaptive filters can be used to reduce the bias by tracking the moments in
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5.      Results - dataset
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Performance compared with TDNN:

Our algorithm is either equivalent or outperforms TDNN.

BWM does not require backpropagation!
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Speed of 
empirical 
embeddings:

Comparison of 
different 
normalizations:

Comparison 
with MSE:
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